{-# htermination (enumFromThenToRatio :: Ratio MyInt -> Ratio MyInt -> Ratio MyInt -> (List (Ratio MyInt))) #-} import qualified Prelude data MyBool = MyTrue | MyFalse data List a = Cons a (List a) | Nil data Tup2 a b = Tup2 a b ; data Double = Double MyInt MyInt ; data Float = Float MyInt MyInt ; data Integer = Integer MyInt ; data MyInt = Pos Nat | Neg Nat ; data Nat = Succ Nat | Zero ; data Ordering = LT | EQ | GT ; data Ratio a = CnPc a a; iterate :: (a -> a) -> a -> (List a); iterate f x = Cons x (iterate f (f x)); primMinusNat :: Nat -> Nat -> MyInt; primMinusNat Zero Zero = Pos Zero; primMinusNat Zero (Succ y) = Neg (Succ y); primMinusNat (Succ x) Zero = Pos (Succ x); primMinusNat (Succ x) (Succ y) = primMinusNat x y; primPlusNat :: Nat -> Nat -> Nat; primPlusNat Zero Zero = Zero; primPlusNat Zero (Succ y) = Succ y; primPlusNat (Succ x) Zero = Succ x; primPlusNat (Succ x) (Succ y) = Succ (Succ (primPlusNat x y)); primMinusInt :: MyInt -> MyInt -> MyInt; primMinusInt (Pos x) (Neg y) = Pos (primPlusNat x y); primMinusInt (Neg x) (Pos y) = Neg (primPlusNat x y); primMinusInt (Neg x) (Neg y) = primMinusNat y x; primMinusInt (Pos x) (Pos y) = primMinusNat x y; msMyInt :: MyInt -> MyInt -> MyInt msMyInt = primMinusInt; primPlusInt :: MyInt -> MyInt -> MyInt; primPlusInt (Pos x) (Neg y) = primMinusNat x y; primPlusInt (Neg x) (Pos y) = primMinusNat y x; primPlusInt (Neg x) (Neg y) = Neg (primPlusNat x y); primPlusInt (Pos x) (Pos y) = Pos (primPlusNat x y); psMyInt :: MyInt -> MyInt -> MyInt psMyInt = primPlusInt; numericEnumFromThen n m = iterate (psMyInt (msMyInt m n)) n; primCmpNat :: Nat -> Nat -> Ordering; primCmpNat Zero Zero = EQ; primCmpNat Zero (Succ y) = LT; primCmpNat (Succ x) Zero = GT; primCmpNat (Succ x) (Succ y) = primCmpNat x y; primCmpInt :: MyInt -> MyInt -> Ordering; primCmpInt (Pos Zero) (Pos Zero) = EQ; primCmpInt (Pos Zero) (Neg Zero) = EQ; primCmpInt (Neg Zero) (Pos Zero) = EQ; primCmpInt (Neg Zero) (Neg Zero) = EQ; primCmpInt (Pos x) (Pos y) = primCmpNat x y; primCmpInt (Pos x) (Neg y) = GT; primCmpInt (Neg x) (Pos y) = LT; primCmpInt (Neg x) (Neg y) = primCmpNat y x; compareMyInt :: MyInt -> MyInt -> Ordering compareMyInt = primCmpInt; esEsOrdering :: Ordering -> Ordering -> MyBool esEsOrdering LT LT = MyTrue; esEsOrdering LT EQ = MyFalse; esEsOrdering LT GT = MyFalse; esEsOrdering EQ LT = MyFalse; esEsOrdering EQ EQ = MyTrue; esEsOrdering EQ GT = MyFalse; esEsOrdering GT LT = MyFalse; esEsOrdering GT EQ = MyFalse; esEsOrdering GT GT = MyTrue; not :: MyBool -> MyBool; not MyTrue = MyFalse; not MyFalse = MyTrue; fsEsOrdering :: Ordering -> Ordering -> MyBool fsEsOrdering x y = not (esEsOrdering x y); gtEsMyInt :: MyInt -> MyInt -> MyBool gtEsMyInt x y = fsEsOrdering (compareMyInt x y) LT; flip :: (c -> a -> b) -> a -> c -> b; flip f x y = f y x; ltEsMyInt :: MyInt -> MyInt -> MyBool ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; numericEnumFromThenToP0 yv yw yx MyTrue = flip gtEsMyInt yv; otherwise :: MyBool; otherwise = MyTrue; numericEnumFromThenToP1 yv yw yx MyTrue = flip ltEsMyInt yv; numericEnumFromThenToP1 yv yw yx MyFalse = numericEnumFromThenToP0 yv yw yx otherwise; numericEnumFromThenToP2 yv yw yx = numericEnumFromThenToP1 yv yw yx (gtEsMyInt yw yx); numericEnumFromThenToP yv yw yx = numericEnumFromThenToP2 yv yw yx; takeWhile0 p x xs MyTrue = Nil; takeWhile1 p x xs MyTrue = Cons x (takeWhile p xs); takeWhile1 p x xs MyFalse = takeWhile0 p x xs otherwise; takeWhile2 p (Cons x xs) = takeWhile1 p x xs (p x); takeWhile3 p Nil = Nil; takeWhile3 xw xx = takeWhile2 xw xx; takeWhile :: (a -> MyBool) -> (List a) -> (List a); takeWhile p Nil = takeWhile3 p Nil; takeWhile p (Cons x xs) = takeWhile2 p (Cons x xs); numericEnumFromThenTo n n' m = takeWhile (numericEnumFromThenToP m n' n) (numericEnumFromThen n n'); enumFromThenToMyInt :: MyInt -> MyInt -> MyInt -> (List MyInt) enumFromThenToMyInt = numericEnumFromThenTo; truncateM0 xy (Tup2 m vv) = m; properFractionQ1 xz yu (Tup2 q vw) = q; stop :: MyBool -> a; stop MyFalse = stop MyFalse; error :: a; error = stop MyTrue; primMinusNatS :: Nat -> Nat -> Nat; primMinusNatS (Succ x) (Succ y) = primMinusNatS x y; primMinusNatS Zero (Succ y) = Zero; primMinusNatS x Zero = x; primDivNatS0 x y MyTrue = Succ (primDivNatS (primMinusNatS x y) (Succ y)); primDivNatS0 x y MyFalse = Zero; primGEqNatS :: Nat -> Nat -> MyBool; primGEqNatS (Succ x) Zero = MyTrue; primGEqNatS (Succ x) (Succ y) = primGEqNatS x y; primGEqNatS Zero (Succ x) = MyFalse; primGEqNatS Zero Zero = MyTrue; primDivNatS :: Nat -> Nat -> Nat; primDivNatS Zero Zero = error; primDivNatS (Succ x) Zero = error; primDivNatS (Succ x) (Succ y) = primDivNatS0 x y (primGEqNatS x y); primDivNatS Zero (Succ x) = Zero; primQuotInt :: MyInt -> MyInt -> MyInt; primQuotInt (Pos x) (Pos (Succ y)) = Pos (primDivNatS x (Succ y)); primQuotInt (Pos x) (Neg (Succ y)) = Neg (primDivNatS x (Succ y)); primQuotInt (Neg x) (Pos (Succ y)) = Neg (primDivNatS x (Succ y)); primQuotInt (Neg x) (Neg (Succ y)) = Pos (primDivNatS x (Succ y)); primQuotInt ww wx = error; primModNatS0 x y MyTrue = primModNatS (primMinusNatS x (Succ y)) (Succ (Succ y)); primModNatS0 x y MyFalse = Succ x; primModNatS :: Nat -> Nat -> Nat; primModNatS Zero Zero = error; primModNatS Zero (Succ x) = Zero; primModNatS (Succ x) Zero = error; primModNatS (Succ x) (Succ Zero) = Zero; primModNatS (Succ x) (Succ (Succ y)) = primModNatS0 x y (primGEqNatS x (Succ y)); primRemInt :: MyInt -> MyInt -> MyInt; primRemInt (Pos x) (Pos (Succ y)) = Pos (primModNatS x (Succ y)); primRemInt (Pos x) (Neg (Succ y)) = Pos (primModNatS x (Succ y)); primRemInt (Neg x) (Pos (Succ y)) = Neg (primModNatS x (Succ y)); primRemInt (Neg x) (Neg (Succ y)) = Neg (primModNatS x (Succ y)); primRemInt vy vz = error; primQrmInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; primQrmInt x y = Tup2 (primQuotInt x y) (primRemInt x y); quotRemMyInt :: MyInt -> MyInt -> Tup2 MyInt MyInt quotRemMyInt = primQrmInt; properFractionVu30 xz yu = quotRemMyInt xz yu; properFractionQ xz yu = properFractionQ1 xz yu (properFractionVu30 xz yu); properFractionR0 xz yu (Tup2 vx r) = r; properFractionR xz yu = properFractionR0 xz yu (properFractionVu30 xz yu); properFractionRatio :: Ratio MyInt -> Tup2 MyInt (Ratio MyInt) properFractionRatio (CnPc x y) = Tup2 (properFractionQ x y) (CnPc (properFractionR x y) y); truncateVu6 xy = properFractionRatio xy; truncateM xy = truncateM0 xy (truncateVu6 xy); truncateRatio :: Ratio MyInt -> MyInt truncateRatio x = truncateM x; fromEnumRatio :: Ratio MyInt -> MyInt fromEnumRatio = truncateRatio; map :: (b -> a) -> (List b) -> (List a); map f Nil = Nil; map f (Cons x xs) = Cons (f x) (map f xs); fromIntMyInt :: MyInt -> MyInt fromIntMyInt x = x; intToRatio x = CnPc (fromIntMyInt x) (fromIntMyInt (Pos (Succ Zero))); fromIntRatio :: MyInt -> Ratio MyInt fromIntRatio = intToRatio; toEnumRatio :: MyInt -> Ratio MyInt toEnumRatio = fromIntRatio; enumFromThenToRatio :: Ratio MyInt -> Ratio MyInt -> Ratio MyInt -> (List (Ratio MyInt)) enumFromThenToRatio x y z = map toEnumRatio (enumFromThenToMyInt (fromEnumRatio x) (fromEnumRatio y) (fromEnumRatio z));