/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 1 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 2 ms] (18) QDP (19) NonInfProof [EQUIVALENT, 0 ms] (20) QDP (21) DependencyGraphProof [EQUIVALENT, 0 ms] (22) TRUE (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPOrderProof [EQUIVALENT, 55 ms] (29) QDP (30) DependencyGraphProof [EQUIVALENT, 0 ms] (31) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: plus(x, y) -> plusIter(x, y, 0) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) sum(xs) -> sumIter(xs, 0) sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs))) ifSum(true, xs, x, y) -> x ifSum(false, xs, x, y) -> sumIter(tail(xs), y) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs a -> b a -> c Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) ifSum(true, xs, x, y) -> x ifSum(false, xs, x, y) -> sumIter(tail(xs), y) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs plus(x, y) -> plusIter(x, y, 0) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) sum(xs) -> sumIter(xs, 0) sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs))) The TRS R 2 is a -> b a -> c The signature Sigma is {a, b, c} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: plus(x, y) -> plusIter(x, y, 0) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) sum(xs) -> sumIter(xs, 0) sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs))) ifSum(true, xs, x, y) -> x ifSum(false, xs, x, y) -> sumIter(tail(xs), y) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs a -> b a -> c The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(x, y) -> PLUSITER(x, y, 0) PLUSITER(x, y, z) -> IFPLUS(le(x, z), x, y, z) PLUSITER(x, y, z) -> LE(x, z) IFPLUS(false, x, y, z) -> PLUSITER(x, s(y), s(z)) LE(s(x), s(y)) -> LE(x, y) SUM(xs) -> SUMITER(xs, 0) SUMITER(xs, x) -> IFSUM(isempty(xs), xs, x, plus(x, head(xs))) SUMITER(xs, x) -> ISEMPTY(xs) SUMITER(xs, x) -> PLUS(x, head(xs)) SUMITER(xs, x) -> HEAD(xs) IFSUM(false, xs, x, y) -> SUMITER(tail(xs), y) IFSUM(false, xs, x, y) -> TAIL(xs) The TRS R consists of the following rules: plus(x, y) -> plusIter(x, y, 0) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) sum(xs) -> sumIter(xs, 0) sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs))) ifSum(true, xs, x, y) -> x ifSum(false, xs, x, y) -> sumIter(tail(xs), y) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs a -> b a -> c The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: plus(x, y) -> plusIter(x, y, 0) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) sum(xs) -> sumIter(xs, 0) sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs))) ifSum(true, xs, x, y) -> x ifSum(false, xs, x, y) -> sumIter(tail(xs), y) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs a -> b a -> c The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: IFPLUS(false, x, y, z) -> PLUSITER(x, s(y), s(z)) PLUSITER(x, y, z) -> IFPLUS(le(x, z), x, y, z) The TRS R consists of the following rules: plus(x, y) -> plusIter(x, y, 0) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) sum(xs) -> sumIter(xs, 0) sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs))) ifSum(true, xs, x, y) -> x ifSum(false, xs, x, y) -> sumIter(tail(xs), y) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs a -> b a -> c The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: IFPLUS(false, x, y, z) -> PLUSITER(x, s(y), s(z)) PLUSITER(x, y, z) -> IFPLUS(le(x, z), x, y, z) The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: IFPLUS(false, x, y, z) -> PLUSITER(x, s(y), s(z)) PLUSITER(x, y, z) -> IFPLUS(le(x, z), x, y, z) The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair IFPLUS(false, x, y, z) -> PLUSITER(x, s(y), s(z)) the following chains were created: *We consider the chain PLUSITER(x3, x4, x5) -> IFPLUS(le(x3, x5), x3, x4, x5), IFPLUS(false, x6, x7, x8) -> PLUSITER(x6, s(x7), s(x8)) which results in the following constraint: (1) (IFPLUS(le(x3, x5), x3, x4, x5)=IFPLUS(false, x6, x7, x8) ==> IFPLUS(false, x6, x7, x8)_>=_PLUSITER(x6, s(x7), s(x8))) We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint: (2) (le(x3, x5)=false ==> IFPLUS(false, x3, x4, x5)_>=_PLUSITER(x3, s(x4), s(x5))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on le(x3, x5)=false which results in the following new constraints: (3) (false=false ==> IFPLUS(false, s(x18), x4, 0)_>=_PLUSITER(s(x18), s(x4), s(0))) (4) (le(x21, x20)=false & (\/x22:le(x21, x20)=false ==> IFPLUS(false, x21, x22, x20)_>=_PLUSITER(x21, s(x22), s(x20))) ==> IFPLUS(false, s(x21), x4, s(x20))_>=_PLUSITER(s(x21), s(x4), s(s(x20)))) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (IFPLUS(false, s(x18), x4, 0)_>=_PLUSITER(s(x18), s(x4), s(0))) We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (\/x22:le(x21, x20)=false ==> IFPLUS(false, x21, x22, x20)_>=_PLUSITER(x21, s(x22), s(x20))) with sigma = [x22 / x4] which results in the following new constraint: (6) (IFPLUS(false, x21, x4, x20)_>=_PLUSITER(x21, s(x4), s(x20)) ==> IFPLUS(false, s(x21), x4, s(x20))_>=_PLUSITER(s(x21), s(x4), s(s(x20)))) For Pair PLUSITER(x, y, z) -> IFPLUS(le(x, z), x, y, z) the following chains were created: *We consider the chain IFPLUS(false, x9, x10, x11) -> PLUSITER(x9, s(x10), s(x11)), PLUSITER(x12, x13, x14) -> IFPLUS(le(x12, x14), x12, x13, x14) which results in the following constraint: (1) (PLUSITER(x9, s(x10), s(x11))=PLUSITER(x12, x13, x14) ==> PLUSITER(x12, x13, x14)_>=_IFPLUS(le(x12, x14), x12, x13, x14)) We simplified constraint (1) using rules (I), (II), (III) which results in the following new constraint: (2) (PLUSITER(x9, s(x10), s(x11))_>=_IFPLUS(le(x9, s(x11)), x9, s(x10), s(x11))) To summarize, we get the following constraints P__>=_ for the following pairs. *IFPLUS(false, x, y, z) -> PLUSITER(x, s(y), s(z)) *(IFPLUS(false, s(x18), x4, 0)_>=_PLUSITER(s(x18), s(x4), s(0))) *(IFPLUS(false, x21, x4, x20)_>=_PLUSITER(x21, s(x4), s(x20)) ==> IFPLUS(false, s(x21), x4, s(x20))_>=_PLUSITER(s(x21), s(x4), s(s(x20)))) *PLUSITER(x, y, z) -> IFPLUS(le(x, z), x, y, z) *(PLUSITER(x9, s(x10), s(x11))_>=_IFPLUS(le(x9, s(x11)), x9, s(x10), s(x11))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 0 POL(IFPLUS(x_1, x_2, x_3, x_4)) = -1 - x_1 + x_2 - x_4 POL(PLUSITER(x_1, x_2, x_3)) = -1 + x_1 - x_3 POL(c) = -2 POL(false) = 0 POL(le(x_1, x_2)) = 0 POL(s(x_1)) = 1 + x_1 POL(true) = 0 The following pairs are in P_>: IFPLUS(false, x, y, z) -> PLUSITER(x, s(y), s(z)) The following pairs are in P_bound: IFPLUS(false, x, y, z) -> PLUSITER(x, s(y), s(z)) The following rules are usable: false -> le(s(x), 0) true -> le(0, y) le(x, y) -> le(s(x), s(y)) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: PLUSITER(x, y, z) -> IFPLUS(le(x, z), x, y, z) The TRS R consists of the following rules: le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (22) TRUE ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: SUMITER(xs, x) -> IFSUM(isempty(xs), xs, x, plus(x, head(xs))) IFSUM(false, xs, x, y) -> SUMITER(tail(xs), y) The TRS R consists of the following rules: plus(x, y) -> plusIter(x, y, 0) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) ifPlus(true, x, y, z) -> y ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) sum(xs) -> sumIter(xs, 0) sumIter(xs, x) -> ifSum(isempty(xs), xs, x, plus(x, head(xs))) ifSum(true, xs, x, y) -> x ifSum(false, xs, x, y) -> sumIter(tail(xs), y) isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x tail(nil) -> nil tail(cons(x, xs)) -> xs a -> b a -> c The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: SUMITER(xs, x) -> IFSUM(isempty(xs), xs, x, plus(x, head(xs))) IFSUM(false, xs, x, y) -> SUMITER(tail(xs), y) The TRS R consists of the following rules: tail(nil) -> nil tail(cons(x, xs)) -> xs isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x plus(x, y) -> plusIter(x, y, 0) ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) ifPlus(true, x, y, z) -> y The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) a We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. sum(x0) sumIter(x0, x1) ifSum(true, x0, x1, x2) ifSum(false, x0, x1, x2) a ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: SUMITER(xs, x) -> IFSUM(isempty(xs), xs, x, plus(x, head(xs))) IFSUM(false, xs, x, y) -> SUMITER(tail(xs), y) The TRS R consists of the following rules: tail(nil) -> nil tail(cons(x, xs)) -> xs isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x plus(x, y) -> plusIter(x, y, 0) ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) ifPlus(true, x, y, z) -> y The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. SUMITER(xs, x) -> IFSUM(isempty(xs), xs, x, plus(x, head(xs))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(IFSUM(x_1, x_2, x_3, x_4)) = x_1 + [1/2]x_2 POL(SUMITER(x_1, x_2)) = [1/4] + x_1 POL(cons(x_1, x_2)) = [1] + [1/4]x_1 + [4]x_2 POL(error) = [1] POL(false) = [1/4] POL(head(x_1)) = 0 POL(ifPlus(x_1, x_2, x_3, x_4)) = [1] + x_2 + x_3 + x_4 POL(isempty(x_1)) = [1/4]x_1 POL(le(x_1, x_2)) = [2]x_1 + [1/4]x_2 POL(nil) = 0 POL(plus(x_1, x_2)) = 0 POL(plusIter(x_1, x_2, x_3)) = [1] + x_1 + x_2 + x_3 POL(s(x_1)) = [2] + [4]x_1 POL(tail(x_1)) = [1/2]x_1 POL(true) = 0 The value of delta used in the strict ordering is 1/4. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: isempty(nil) -> true isempty(cons(x, xs)) -> false tail(nil) -> nil tail(cons(x, xs)) -> xs ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: IFSUM(false, xs, x, y) -> SUMITER(tail(xs), y) The TRS R consists of the following rules: tail(nil) -> nil tail(cons(x, xs)) -> xs isempty(nil) -> true isempty(cons(x, xs)) -> false head(nil) -> error head(cons(x, xs)) -> x plus(x, y) -> plusIter(x, y, 0) ifPlus(false, x, y, z) -> plusIter(x, s(y), s(z)) plusIter(x, y, z) -> ifPlus(le(x, z), x, y, z) le(s(x), 0) -> false le(0, y) -> true le(s(x), s(y)) -> le(x, y) ifPlus(true, x, y, z) -> y The set Q consists of the following terms: plus(x0, x1) plusIter(x0, x1, x2) ifPlus(true, x0, x1, x2) ifPlus(false, x0, x1, x2) le(s(x0), 0) le(0, x0) le(s(x0), s(x1)) isempty(nil) isempty(cons(x0, x1)) head(nil) head(cons(x0, x1)) tail(nil) tail(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (31) TRUE