/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) SemLabProof [SOUND, 92 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) QDP (13) MRRProof [EQUIVALENT, 8 ms] (14) QDP (15) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPOrderProof [EQUIVALENT, 5 ms] (18) QDP (19) PisEmptyProof [EQUIVALENT, 0 ms] (20) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(f(a, x), f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: F(y, f(x, f(a, x))) -> F(f(f(a, x), f(x, a)), f(a, y)) F(y, f(x, f(a, x))) -> F(f(a, x), f(x, a)) F(y, f(x, f(a, x))) -> F(x, a) F(y, f(x, f(a, x))) -> F(a, y) F(x, f(x, y)) -> F(f(f(x, a), a), a) F(x, f(x, y)) -> F(f(x, a), a) F(x, f(x, y)) -> F(x, a) The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(f(a, x), f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(y, f(x, f(a, x))) -> F(a, y) F(y, f(x, f(a, x))) -> F(f(f(a, x), f(x, a)), f(a, y)) The TRS R consists of the following rules: f(y, f(x, f(a, x))) -> f(f(f(a, x), f(x, a)), f(a, y)) f(x, f(x, y)) -> f(f(f(x, a), a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. a: 1 f: 0 F: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.0-0(x, f.1-0(a., x))) -> F.1-0(a., y) F.0-0(y, f.0-0(x, f.1-0(a., x))) -> F.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-0(a., y)) F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) F.1-0(y, f.0-0(x, f.1-0(a., x))) -> F.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-1(a., y)) F.1-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-1(a., y)) F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.1-0(a., y) F.1-0(y, f.0-0(x, f.1-0(a., x))) -> F.1-1(a., y) F.1-0(y, f.1-0(x, f.1-1(a., x))) -> F.1-1(a., y) The TRS R consists of the following rules: f.0-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-0(a., y)) f.0-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-1(a., y)) f.0-0(x, f.0-0(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.0-0(x, f.1-0(a., x))) -> F.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-0(a., y)) F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) The TRS R consists of the following rules: f.0-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-0(a., y)) f.0-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-1(a., y)) f.0-0(x, f.0-0(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f.0-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-0(a., y)) f.0-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) f.0-0(x, f.0-0(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.0-0(x, f.1-0(a., x))) -> F.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-0(a., y)) F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) The TRS R consists of the following rules: f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-1(a., y)) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) The TRS R consists of the following rules: f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-1(a., y)) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: f.1-0(y, f.0-0(x, f.1-0(a., x))) -> f.0-0(f.0-0(f.1-0(a., x), f.0-1(x, a.)), f.1-1(a., y)) f.1-0(y, f.1-0(x, f.1-1(a., x))) -> f.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-1(a., y)) f.1-0(x, f.1-0(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) f.1-0(x, f.1-1(x, y)) -> f.0-1(f.0-1(f.1-1(x, a.), a.), a.) Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-1(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) The TRS R consists of the following rules: f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: f.0-0(x, f.0-1(x, y)) -> f.0-1(f.0-1(f.0-1(x, a.), a.), a.) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F.0-0(y, f.1-0(x, f.1-1(a., x))) -> F.0-0(f.0-0(f.1-1(a., x), f.1-1(x, a.)), f.1-0(a., y)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = 0 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (18) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (20) YES