/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 46 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) MRRProof [EQUIVALENT, 11 ms] (34) QDP (35) PisEmptyProof [EQUIVALENT, 0 ms] (36) YES (37) QDP (38) UsableRulesProof [EQUIVALENT, 0 ms] (39) QDP (40) MRRProof [EQUIVALENT, 0 ms] (41) QDP (42) QDPSizeChangeProof [EQUIVALENT, 0 ms] (43) YES (44) QDP (45) UsableRulesProof [EQUIVALENT, 0 ms] (46) QDP (47) QDPSizeChangeProof [EQUIVALENT, 0 ms] (48) YES (49) QDP (50) UsableRulesProof [EQUIVALENT, 0 ms] (51) QDP (52) QDPSizeChangeProof [EQUIVALENT, 0 ms] (53) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 0(y)) -> 0^1(+(x, y)) +^1(0(x), 0(y)) -> +^1(x, y) +^1(0(x), 1(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> 0^1(+(+(x, y), 1(#))) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) +^1(x, +(y, z)) -> +^1(+(x, y), z) +^1(x, +(y, z)) -> +^1(x, y) -^1(0(x), 0(y)) -> 0^1(-(x, y)) -^1(0(x), 0(y)) -> -^1(x, y) -^1(0(x), 1(y)) -> -^1(-(x, y), 1(#)) -^1(0(x), 1(y)) -> -^1(x, y) -^1(1(x), 0(y)) -> -^1(x, y) -^1(1(x), 1(y)) -> 0^1(-(x, y)) -^1(1(x), 1(y)) -> -^1(x, y) GE(0(x), 0(y)) -> GE(x, y) GE(0(x), 1(y)) -> NOT(ge(y, x)) GE(0(x), 1(y)) -> GE(y, x) GE(1(x), 0(y)) -> GE(x, y) GE(1(x), 1(y)) -> GE(x, y) GE(#, 0(x)) -> GE(#, x) MIN(n(x, y, z)) -> MIN(y) MAX(n(x, y, z)) -> MAX(z) BS(n(x, y, z)) -> AND(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) BS(n(x, y, z)) -> AND(ge(x, max(y)), ge(min(z), x)) BS(n(x, y, z)) -> GE(x, max(y)) BS(n(x, y, z)) -> MAX(y) BS(n(x, y, z)) -> GE(min(z), x) BS(n(x, y, z)) -> MIN(z) BS(n(x, y, z)) -> AND(bs(y), bs(z)) BS(n(x, y, z)) -> BS(y) BS(n(x, y, z)) -> BS(z) SIZE(n(x, y, z)) -> +^1(+(size(x), size(y)), 1(#)) SIZE(n(x, y, z)) -> +^1(size(x), size(y)) SIZE(n(x, y, z)) -> SIZE(x) SIZE(n(x, y, z)) -> SIZE(y) WB(n(x, y, z)) -> AND(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) WB(n(x, y, z)) -> IF(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))) WB(n(x, y, z)) -> GE(size(y), size(z)) WB(n(x, y, z)) -> SIZE(y) WB(n(x, y, z)) -> SIZE(z) WB(n(x, y, z)) -> GE(1(#), -(size(y), size(z))) WB(n(x, y, z)) -> -^1(size(y), size(z)) WB(n(x, y, z)) -> GE(1(#), -(size(z), size(y))) WB(n(x, y, z)) -> -^1(size(z), size(y)) WB(n(x, y, z)) -> AND(wb(y), wb(z)) WB(n(x, y, z)) -> WB(y) WB(n(x, y, z)) -> WB(z) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 24 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: MAX(n(x, y, z)) -> MAX(z) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: MAX(n(x, y, z)) -> MAX(z) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MAX(n(x, y, z)) -> MAX(z) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(n(x, y, z)) -> MIN(y) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(n(x, y, z)) -> MIN(y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MIN(n(x, y, z)) -> MIN(y) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: GE(#, 0(x)) -> GE(#, x) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: GE(#, 0(x)) -> GE(#, x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(#, 0(x)) -> GE(#, x) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: GE(0(x), 1(y)) -> GE(y, x) GE(0(x), 0(y)) -> GE(x, y) GE(1(x), 0(y)) -> GE(x, y) GE(1(x), 1(y)) -> GE(x, y) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: GE(0(x), 1(y)) -> GE(y, x) GE(0(x), 0(y)) -> GE(x, y) GE(1(x), 0(y)) -> GE(x, y) GE(1(x), 1(y)) -> GE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(0(x), 1(y)) -> GE(y, x) The graph contains the following edges 2 > 1, 1 > 2 *GE(0(x), 0(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 *GE(1(x), 0(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 *GE(1(x), 1(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: BS(n(x, y, z)) -> BS(z) BS(n(x, y, z)) -> BS(y) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: BS(n(x, y, z)) -> BS(z) BS(n(x, y, z)) -> BS(y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *BS(n(x, y, z)) -> BS(z) The graph contains the following edges 1 > 1 *BS(n(x, y, z)) -> BS(y) The graph contains the following edges 1 > 1 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(0(x), 1(y)) -> -^1(-(x, y), 1(#)) -^1(0(x), 1(y)) -> -^1(x, y) -^1(0(x), 0(y)) -> -^1(x, y) -^1(1(x), 0(y)) -> -^1(x, y) -^1(1(x), 1(y)) -> -^1(x, y) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(0(x), 1(y)) -> -^1(-(x, y), 1(#)) -^1(0(x), 1(y)) -> -^1(x, y) -^1(0(x), 0(y)) -> -^1(x, y) -^1(1(x), 0(y)) -> -^1(x, y) -^1(1(x), 1(y)) -> -^1(x, y) The TRS R consists of the following rules: -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) 0(#) -> # Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: -^1(0(x), 1(y)) -> -^1(-(x, y), 1(#)) -^1(0(x), 1(y)) -> -^1(x, y) -^1(0(x), 0(y)) -> -^1(x, y) -^1(1(x), 0(y)) -> -^1(x, y) -^1(1(x), 1(y)) -> -^1(x, y) Strictly oriented rules of the TRS R: -(0(x), 0(y)) -> 0(-(x, y)) -(1(x), 0(y)) -> 1(-(x, y)) 0(#) -> # Used ordering: Polynomial interpretation [POLO]: POL(#) = 0 POL(-(x_1, x_2)) = x_1 + x_2 POL(-^1(x_1, x_2)) = x_1 + 2*x_2 POL(0(x_1)) = 2 + 2*x_1 POL(1(x_1)) = 1 + 2*x_1 ---------------------------------------- (34) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: -(x, #) -> x -(#, x) -> # -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 1(y)) -> 0(-(x, y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (36) YES ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 1(y)) -> +^1(x, y) +^1(0(x), 0(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) +^1(x, +(y, z)) -> +^1(+(x, y), z) +^1(x, +(y, z)) -> +^1(x, y) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 1(y)) -> +^1(x, y) +^1(0(x), 0(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) +^1(x, +(y, z)) -> +^1(+(x, y), z) +^1(x, +(y, z)) -> +^1(x, y) The TRS R consists of the following rules: +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) 0(#) -> # Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: +^1(0(x), 1(y)) -> +^1(x, y) +^1(1(x), 0(y)) -> +^1(x, y) +^1(1(x), 1(y)) -> +^1(+(x, y), 1(#)) +^1(1(x), 1(y)) -> +^1(x, y) Used ordering: Polynomial interpretation [POLO]: POL(#) = 0 POL(+(x_1, x_2)) = x_1 + x_2 POL(+^1(x_1, x_2)) = x_1 + 2*x_2 POL(0(x_1)) = 2*x_1 POL(1(x_1)) = 1 + 2*x_1 ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: +^1(0(x), 0(y)) -> +^1(x, y) +^1(x, +(y, z)) -> +^1(+(x, y), z) +^1(x, +(y, z)) -> +^1(x, y) The TRS R consists of the following rules: +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) 0(#) -> # Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *+^1(0(x), 0(y)) -> +^1(x, y) The graph contains the following edges 1 > 1, 2 > 2 *+^1(x, +(y, z)) -> +^1(+(x, y), z) The graph contains the following edges 2 > 2 *+^1(x, +(y, z)) -> +^1(x, y) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (43) YES ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: SIZE(n(x, y, z)) -> SIZE(y) SIZE(n(x, y, z)) -> SIZE(x) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: SIZE(n(x, y, z)) -> SIZE(y) SIZE(n(x, y, z)) -> SIZE(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *SIZE(n(x, y, z)) -> SIZE(y) The graph contains the following edges 1 > 1 *SIZE(n(x, y, z)) -> SIZE(x) The graph contains the following edges 1 > 1 ---------------------------------------- (48) YES ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: WB(n(x, y, z)) -> WB(z) WB(n(x, y, z)) -> WB(y) The TRS R consists of the following rules: 0(#) -> # +(x, #) -> x +(#, x) -> x +(0(x), 0(y)) -> 0(+(x, y)) +(0(x), 1(y)) -> 1(+(x, y)) +(1(x), 0(y)) -> 1(+(x, y)) +(1(x), 1(y)) -> 0(+(+(x, y), 1(#))) +(x, +(y, z)) -> +(+(x, y), z) -(x, #) -> x -(#, x) -> # -(0(x), 0(y)) -> 0(-(x, y)) -(0(x), 1(y)) -> 1(-(-(x, y), 1(#))) -(1(x), 0(y)) -> 1(-(x, y)) -(1(x), 1(y)) -> 0(-(x, y)) not(false) -> true not(true) -> false and(x, true) -> x and(x, false) -> false if(true, x, y) -> x if(false, x, y) -> y ge(0(x), 0(y)) -> ge(x, y) ge(0(x), 1(y)) -> not(ge(y, x)) ge(1(x), 0(y)) -> ge(x, y) ge(1(x), 1(y)) -> ge(x, y) ge(x, #) -> true ge(#, 1(x)) -> false ge(#, 0(x)) -> ge(#, x) val(l(x)) -> x val(n(x, y, z)) -> x min(l(x)) -> x min(n(x, y, z)) -> min(y) max(l(x)) -> x max(n(x, y, z)) -> max(z) bs(l(x)) -> true bs(n(x, y, z)) -> and(and(ge(x, max(y)), ge(min(z), x)), and(bs(y), bs(z))) size(l(x)) -> 1(#) size(n(x, y, z)) -> +(+(size(x), size(y)), 1(#)) wb(l(x)) -> true wb(n(x, y, z)) -> and(if(ge(size(y), size(z)), ge(1(#), -(size(y), size(z))), ge(1(#), -(size(z), size(y)))), and(wb(y), wb(z))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: WB(n(x, y, z)) -> WB(z) WB(n(x, y, z)) -> WB(y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *WB(n(x, y, z)) -> WB(z) The graph contains the following edges 1 > 1 *WB(n(x, y, z)) -> WB(y) The graph contains the following edges 1 > 1 ---------------------------------------- (53) YES