/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPOrderProof [EQUIVALENT, 72 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x The TRS R 2 is cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) The signature Sigma is {cond1_2, cond2_2} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, x) -> COND2(even(x), x) COND1(true, x) -> EVEN(x) COND2(true, x) -> COND1(neq(x, 0), div2(x)) COND2(true, x) -> NEQ(x, 0) COND2(true, x) -> DIV2(x) COND2(false, x) -> COND1(neq(x, 0), p(x)) COND2(false, x) -> NEQ(x, 0) COND2(false, x) -> P(x) NEQ(s(x), s(y)) -> NEQ(x, y) EVEN(s(s(x))) -> EVEN(x) DIV2(s(s(x))) -> DIV2(x) The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 6 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: DIV2(s(s(x))) -> DIV2(x) The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: DIV2(s(s(x))) -> DIV2(x) R is empty. The set Q consists of the following terms: cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: DIV2(s(s(x))) -> DIV2(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DIV2(s(s(x))) -> DIV2(x) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) R is empty. The set Q consists of the following terms: cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: EVEN(s(s(x))) -> EVEN(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EVEN(s(s(x))) -> EVEN(x) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x) -> COND1(neq(x, 0), div2(x)) COND1(true, x) -> COND2(even(x), x) COND2(false, x) -> COND1(neq(x, 0), p(x)) The TRS R consists of the following rules: cond1(true, x) -> cond2(even(x), x) cond2(true, x) -> cond1(neq(x, 0), div2(x)) cond2(false, x) -> cond1(neq(x, 0), p(x)) neq(0, 0) -> false neq(0, s(x)) -> true neq(s(x), 0) -> true neq(s(x), s(y)) -> neq(x, y) even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x) -> COND1(neq(x, 0), div2(x)) COND1(true, x) -> COND2(even(x), x) COND2(false, x) -> COND1(neq(x, 0), p(x)) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) The set Q consists of the following terms: cond1(true, x0) cond2(true, x0) cond2(false, x0) neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0) cond2(true, x0) cond2(false, x0) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x) -> COND1(neq(x, 0), div2(x)) COND1(true, x) -> COND2(even(x), x) COND2(false, x) -> COND1(neq(x, 0), p(x)) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) The set Q consists of the following terms: neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. COND1(true, x) -> COND2(even(x), x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(COND1(x_1, x_2)) = [1/4]x_1 + [2]x_2 POL(COND2(x_1, x_2)) = [2]x_2 POL(div2(x_1)) = [1/2]x_1 POL(even(x_1)) = 0 POL(false) = 0 POL(neq(x_1, x_2)) = [1/2]x_1 POL(p(x_1)) = [1/4]x_1 POL(s(x_1)) = [4] + [4]x_1 POL(true) = [1/4] The value of delta used in the strict ordering is 1/16. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: neq(0, 0) -> false neq(s(x), 0) -> true div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) p(0) -> 0 p(s(x)) -> x ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x) -> COND1(neq(x, 0), div2(x)) COND2(false, x) -> COND1(neq(x, 0), p(x)) The TRS R consists of the following rules: neq(0, 0) -> false neq(s(x), 0) -> true p(0) -> 0 p(s(x)) -> x even(0) -> true even(s(0)) -> false even(s(s(x))) -> even(x) div2(0) -> 0 div2(s(0)) -> 0 div2(s(s(x))) -> s(div2(x)) The set Q consists of the following terms: neq(0, 0) neq(0, s(x0)) neq(s(x0), 0) neq(s(x0), s(y)) even(0) even(s(0)) even(s(s(x0))) div2(0) div2(s(0)) div2(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (29) TRUE