/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR X Y) (RULES ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ) Problem 1: Innermost Equivalent Processor: -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: IFMINUS(false,s(X),Y) -> MINUS(X,Y) LE(s(X),s(Y)) -> LE(X,Y) MINUS(s(X),Y) -> IFMINUS(le(s(X),Y),s(X),Y) MINUS(s(X),Y) -> LE(s(X),Y) QUOT(s(X),s(Y)) -> MINUS(X,Y) QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y)) -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) Problem 1: SCC Processor: -> Pairs: IFMINUS(false,s(X),Y) -> MINUS(X,Y) LE(s(X),s(Y)) -> LE(X,Y) MINUS(s(X),Y) -> IFMINUS(le(s(X),Y),s(X),Y) MINUS(s(X),Y) -> LE(s(X),Y) QUOT(s(X),s(Y)) -> MINUS(X,Y) QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y)) -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: LE(s(X),s(Y)) -> LE(X,Y) ->->-> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ->->Cycle: ->->-> Pairs: IFMINUS(false,s(X),Y) -> MINUS(X,Y) MINUS(s(X),Y) -> IFMINUS(le(s(X),Y),s(X),Y) ->->-> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ->->Cycle: ->->-> Pairs: QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y)) ->->-> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) The problem is decomposed in 3 subproblems. Problem 1.1: Subterm Processor: -> Pairs: LE(s(X),s(Y)) -> LE(X,Y) -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ->Projection: pi(LE) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Subterm Processor: -> Pairs: IFMINUS(false,s(X),Y) -> MINUS(X,Y) MINUS(s(X),Y) -> IFMINUS(le(s(X),Y),s(X),Y) -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ->Projection: pi(IFMINUS) = 2 pi(MINUS) = 1 Problem 1.2: SCC Processor: -> Pairs: MINUS(s(X),Y) -> IFMINUS(le(s(X),Y),s(X),Y) -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Reduction Pairs Processor: -> Pairs: QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y)) -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) -> Usable rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [ifMinus](X1,X2,X3) = 2.X1 + 2.X2 [le](X1,X2) = 0 [minus](X1,X2) = 2.X1 [0] = 2 [false] = 0 [s](X) = 2.X + 2 [true] = 0 [QUOT](X1,X2) = X1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: ifMinus(false,s(X),Y) -> s(minus(X,Y)) ifMinus(true,s(X),Y) -> 0 le(0,Y) -> true le(s(X),0) -> false le(s(X),s(Y)) -> le(X,Y) minus(0,Y) -> 0 minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) quot(0,s(Y)) -> 0 quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.