/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) QDPOrderProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) SemLabProof [SOUND, 127 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) AND (11) QDP (12) QDPOrderProof [EQUIVALENT, 5 ms] (13) QDP (14) PisEmptyProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) QDPOrderProof [EQUIVALENT, 23 ms] (18) QDP (19) PisEmptyProof [EQUIVALENT, 0 ms] (20) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: p(a(x0), p(x1, p(x2, x3))) -> p(x1, p(x0, p(a(x3), x3))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: P(a(x0), p(x1, p(x2, x3))) -> P(x1, p(x0, p(a(x3), x3))) P(a(x0), p(x1, p(x2, x3))) -> P(x0, p(a(x3), x3)) P(a(x0), p(x1, p(x2, x3))) -> P(a(x3), x3) The TRS R consists of the following rules: p(a(x0), p(x1, p(x2, x3))) -> p(x1, p(x0, p(a(x3), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. P(a(x0), p(x1, p(x2, x3))) -> P(x0, p(a(x3), x3)) P(a(x0), p(x1, p(x2, x3))) -> P(a(x3), x3) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. P(x1, x2) = x2 p(x1, x2) = p(x2) Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 p_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: p(a(x0), p(x1, p(x2, x3))) -> p(x1, p(x0, p(a(x3), x3))) ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: P(a(x0), p(x1, p(x2, x3))) -> P(x1, p(x0, p(a(x3), x3))) The TRS R consists of the following rules: p(a(x0), p(x1, p(x2, x3))) -> p(x1, p(x0, p(a(x3), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule P(a(x0), p(x1, p(x2, x3))) -> P(x1, p(x0, p(a(x3), x3))) we obtained the following new rules [LPAR04]: (P(a(x0), p(a(y_0), p(x2, x3))) -> P(a(y_0), p(x0, p(a(x3), x3))),P(a(x0), p(a(y_0), p(x2, x3))) -> P(a(y_0), p(x0, p(a(x3), x3)))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: P(a(x0), p(a(y_0), p(x2, x3))) -> P(a(y_0), p(x0, p(a(x3), x3))) The TRS R consists of the following rules: p(a(x0), p(x1, p(x2, x3))) -> p(x1, p(x0, p(a(x3), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. a: 1 p: 0 P: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: P.1-0(a.0(x0), p.1-0(a.0(y_0), p.0-0(x2, x3))) -> P.1-0(a.0(y_0), p.0-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.0(x0), p.1-0(a.0(y_0), p.0-1(x2, x3))) -> P.1-0(a.0(y_0), p.0-0(x0, p.1-1(a.1(x3), x3))) P.1-0(a.0(x0), p.1-0(a.0(y_0), p.1-0(x2, x3))) -> P.1-0(a.0(y_0), p.0-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.0(x0), p.1-0(a.0(y_0), p.1-1(x2, x3))) -> P.1-0(a.0(y_0), p.0-0(x0, p.1-1(a.1(x3), x3))) P.1-0(a.0(x0), p.1-0(a.1(y_0), p.0-0(x2, x3))) -> P.1-0(a.1(y_0), p.0-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.0(x0), p.1-0(a.1(y_0), p.0-1(x2, x3))) -> P.1-0(a.1(y_0), p.0-0(x0, p.1-1(a.1(x3), x3))) P.1-0(a.0(x0), p.1-0(a.1(y_0), p.1-0(x2, x3))) -> P.1-0(a.1(y_0), p.0-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.0(x0), p.1-0(a.1(y_0), p.1-1(x2, x3))) -> P.1-0(a.1(y_0), p.0-0(x0, p.1-1(a.1(x3), x3))) P.1-0(a.1(x0), p.1-0(a.0(y_0), p.0-0(x2, x3))) -> P.1-0(a.0(y_0), p.1-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.1(x0), p.1-0(a.0(y_0), p.0-1(x2, x3))) -> P.1-0(a.0(y_0), p.1-0(x0, p.1-1(a.1(x3), x3))) P.1-0(a.1(x0), p.1-0(a.0(y_0), p.1-0(x2, x3))) -> P.1-0(a.0(y_0), p.1-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.1(x0), p.1-0(a.0(y_0), p.1-1(x2, x3))) -> P.1-0(a.0(y_0), p.1-0(x0, p.1-1(a.1(x3), x3))) P.1-0(a.1(x0), p.1-0(a.1(y_0), p.0-0(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.1(x0), p.1-0(a.1(y_0), p.0-1(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-1(a.1(x3), x3))) P.1-0(a.1(x0), p.1-0(a.1(y_0), p.1-0(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.1(x0), p.1-0(a.1(y_0), p.1-1(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-1(a.1(x3), x3))) The TRS R consists of the following rules: p.1-0(a.0(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 13 less nodes. ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: P.1-0(a.1(x0), p.1-0(a.1(y_0), p.1-1(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-1(a.1(x3), x3))) The TRS R consists of the following rules: p.1-0(a.0(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. P.1-0(a.1(x0), p.1-0(a.1(y_0), p.1-1(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-1(a.1(x3), x3))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(P.1-0(x_1, x_2)) = x_1 + x_2 POL(a.1(x_1)) = 1 + x_1 POL(p.1-0(x_1, x_2)) = x_1 POL(p.1-1(x_1, x_2)) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (13) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: p.1-0(a.0(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: P.1-0(a.1(x0), p.1-0(a.1(y_0), p.0-0(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.1(x0), p.1-0(a.1(y_0), p.1-0(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-0(a.0(x3), x3))) The TRS R consists of the following rules: p.1-0(a.0(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. P.1-0(a.1(x0), p.1-0(a.1(y_0), p.0-0(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-0(a.0(x3), x3))) P.1-0(a.1(x0), p.1-0(a.1(y_0), p.1-0(x2, x3))) -> P.1-0(a.1(y_0), p.1-0(x0, p.1-0(a.0(x3), x3))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(P.1-0(x_1, x_2)) = x_1 + x_2 POL(a.0(x_1)) = 0 POL(a.1(x_1)) = 1 + x_1 POL(p.0-0(x_1, x_2)) = x_2 POL(p.0-1(x_1, x_2)) = x_2 POL(p.1-0(x_1, x_2)) = x_1 + x_2 POL(p.1-1(x_1, x_2)) = x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: p.1-0(a.0(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) ---------------------------------------- (18) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: p.1-0(a.0(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.0(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.0-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.0-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-0(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.0-0(x1, p.1-1(x2, x3))) -> p.0-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.0-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-0(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-0(a.0(x3), x3))) p.1-0(a.1(x0), p.1-0(x1, p.1-1(x2, x3))) -> p.1-0(x1, p.1-0(x0, p.1-1(a.1(x3), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (20) YES