/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. F : [] --> o T : [] --> o and : [o * o] --> o equiv : [o * o] --> o impl : [o * o] --> o neg : [o] --> o or : [o * o] --> o xor : [o * o] --> o xor(X, F) => X xor(X, neg(X)) => F and(X, T) => X and(X, F) => F and(X, X) => X and(xor(X, Y), Z) => xor(and(X, Z), and(Y, Z)) xor(X, X) => F impl(X, Y) => xor(and(X, Y), xor(X, T)) or(X, Y) => xor(and(X, Y), xor(X, Y)) equiv(X, Y) => xor(X, xor(Y, T)) neg(X) => xor(X, T) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): xor(X, F) >? X xor(X, neg(X)) >? F and(X, T) >? X and(X, F) >? F and(X, X) >? X and(xor(X, Y), Z) >? xor(and(X, Z), and(Y, Z)) xor(X, X) >? F impl(X, Y) >? xor(and(X, Y), xor(X, T)) or(X, Y) >? xor(and(X, Y), xor(X, Y)) equiv(X, Y) >? xor(X, xor(Y, T)) neg(X) >? xor(X, T) about to try horpo We use a recursive path ordering as defined in [Kop12, Chapter 5]. Argument functions: [[T]] = _|_ We choose Lex = {} and Mul = {F, and, equiv, impl, neg, or, xor}, and the following precedence: equiv > impl > neg > or > and > xor > F Taking the argument function into account, and fixing the greater / greater equal choices, the constraints can be denoted as follows: xor(X, F) > X xor(X, neg(X)) >= F and(X, _|_) > X and(X, F) >= F and(X, X) >= X and(xor(X, Y), Z) > xor(and(X, Z), and(Y, Z)) xor(X, X) > F impl(X, Y) > xor(and(X, Y), xor(X, _|_)) or(X, Y) > xor(and(X, Y), xor(X, Y)) equiv(X, Y) >= xor(X, xor(Y, _|_)) neg(X) >= xor(X, _|_) With these choices, we have: 1] xor(X, F) > X because [2], by definition 2] xor*(X, F) >= X because [3], by (Select) 3] X >= X by (Meta) 4] xor(X, neg(X)) >= F because [5], by (Star) 5] xor*(X, neg(X)) >= F because xor > F, by (Copy) 6] and(X, _|_) > X because [7], by definition 7] and*(X, _|_) >= X because [3], by (Select) 8] and(X, F) >= F because [9], by (Star) 9] and*(X, F) >= F because and > F, by (Copy) 10] and(X, X) >= X because [11], by (Star) 11] and*(X, X) >= X because [3], by (Select) 12] and(xor(X, Y), Z) > xor(and(X, Z), and(Y, Z)) because [13], by definition 13] and*(xor(X, Y), Z) >= xor(and(X, Z), and(Y, Z)) because and > xor, [14] and [18], by (Copy) 14] and*(xor(X, Y), Z) >= and(X, Z) because and in Mul, [15] and [17], by (Stat) 15] xor(X, Y) > X because [16], by definition 16] xor*(X, Y) >= X because [3], by (Select) 17] Z >= Z by (Meta) 18] and*(xor(X, Y), Z) >= and(Y, Z) because and in Mul, [19] and [17], by (Stat) 19] xor(X, Y) > Y because [20], by definition 20] xor*(X, Y) >= Y because [21], by (Select) 21] Y >= Y by (Meta) 22] xor(X, X) > F because [23], by definition 23] xor*(X, X) >= F because xor > F, by (Copy) 24] impl(X, Y) > xor(and(X, Y), xor(X, _|_)) because [25], by definition 25] impl*(X, Y) >= xor(and(X, Y), xor(X, _|_)) because impl > xor, [26] and [29], by (Copy) 26] impl*(X, Y) >= and(X, Y) because impl > and, [27] and [28], by (Copy) 27] impl*(X, Y) >= X because [3], by (Select) 28] impl*(X, Y) >= Y because [21], by (Select) 29] impl*(X, Y) >= xor(X, _|_) because impl > xor, [27] and [30], by (Copy) 30] impl*(X, Y) >= _|_ by (Bot) 31] or(X, Y) > xor(and(X, Y), xor(X, Y)) because [32], by definition 32] or*(X, Y) >= xor(and(X, Y), xor(X, Y)) because or > xor, [33] and [36], by (Copy) 33] or*(X, Y) >= and(X, Y) because or > and, [34] and [35], by (Copy) 34] or*(X, Y) >= X because [3], by (Select) 35] or*(X, Y) >= Y because [21], by (Select) 36] or*(X, Y) >= xor(X, Y) because or > xor, [34] and [35], by (Copy) 37] equiv(X, Y) >= xor(X, xor(Y, _|_)) because [38], by (Star) 38] equiv*(X, Y) >= xor(X, xor(Y, _|_)) because equiv > xor, [39] and [40], by (Copy) 39] equiv*(X, Y) >= X because [3], by (Select) 40] equiv*(X, Y) >= xor(Y, _|_) because equiv > xor, [41] and [42], by (Copy) 41] equiv*(X, Y) >= Y because [21], by (Select) 42] equiv*(X, Y) >= _|_ by (Bot) 43] neg(X) >= xor(X, _|_) because [44], by (Star) 44] neg*(X) >= xor(X, _|_) because neg > xor, [45] and [46], by (Copy) 45] neg*(X) >= X because [3], by (Select) 46] neg*(X) >= _|_ by (Bot) We can thus remove the following rules: xor(X, F) => X and(X, T) => X and(xor(X, Y), Z) => xor(and(X, Z), and(Y, Z)) xor(X, X) => F impl(X, Y) => xor(and(X, Y), xor(X, T)) or(X, Y) => xor(and(X, Y), xor(X, Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): xor(X, neg(X)) >? F and(X, F) >? F and(X, X) >? X equiv(X, Y) >? xor(X, xor(Y, T)) neg(X) >? xor(X, T) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: F = 0 T = 0 and = \y0y1.3 + y0 + 3y1 equiv = \y0y1.3 + 3y0 + 3y1 neg = \y0.3 + 3y0 xor = \y0y1.y0 + y1 Using this interpretation, the requirements translate to: [[xor(_x0, neg(_x0))]] = 3 + 4x0 > 0 = [[F]] [[and(_x0, F)]] = 3 + x0 > 0 = [[F]] [[and(_x0, _x0)]] = 3 + 4x0 > x0 = [[_x0]] [[equiv(_x0, _x1)]] = 3 + 3x0 + 3x1 > x0 + x1 = [[xor(_x0, xor(_x1, T))]] [[neg(_x0)]] = 3 + 3x0 > x0 = [[xor(_x0, T)]] We can thus remove the following rules: xor(X, neg(X)) => F and(X, F) => F and(X, X) => X equiv(X, Y) => xor(X, xor(Y, T)) neg(X) => xor(X, T) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.