/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) MRRProof [EQUIVALENT, 24 ms] (6) QDP (7) QDPOrderProof [EQUIVALENT, 19 ms] (8) QDP (9) PisEmptyProof [EQUIVALENT, 0 ms] (10) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: p(a(x0), p(b(x1), p(a(x2), x3))) -> p(x2, p(a(a(x0)), p(b(x1), x3))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: P(a(x0), p(b(x1), p(a(x2), x3))) -> P(x2, p(a(a(x0)), p(b(x1), x3))) P(a(x0), p(b(x1), p(a(x2), x3))) -> P(a(a(x0)), p(b(x1), x3)) P(a(x0), p(b(x1), p(a(x2), x3))) -> P(b(x1), x3) The TRS R consists of the following rules: p(a(x0), p(b(x1), p(a(x2), x3))) -> p(x2, p(a(a(x0)), p(b(x1), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: P(a(x0), p(b(x1), p(a(x2), x3))) -> P(a(a(x0)), p(b(x1), x3)) P(a(x0), p(b(x1), p(a(x2), x3))) -> P(x2, p(a(a(x0)), p(b(x1), x3))) The TRS R consists of the following rules: p(a(x0), p(b(x1), p(a(x2), x3))) -> p(x2, p(a(a(x0)), p(b(x1), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: P(a(x0), p(b(x1), p(a(x2), x3))) -> P(a(a(x0)), p(b(x1), x3)) Used ordering: Polynomial interpretation [POLO]: POL(P(x_1, x_2)) = 2*x_1 + x_2 POL(a(x_1)) = x_1 POL(b(x_1)) = 2*x_1 POL(p(x_1, x_2)) = 2 + 2*x_1 + x_2 ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: P(a(x0), p(b(x1), p(a(x2), x3))) -> P(x2, p(a(a(x0)), p(b(x1), x3))) The TRS R consists of the following rules: p(a(x0), p(b(x1), p(a(x2), x3))) -> p(x2, p(a(a(x0)), p(b(x1), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. P(a(x0), p(b(x1), p(a(x2), x3))) -> P(x2, p(a(a(x0)), p(b(x1), x3))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(P(x_1, x_2)) = [4]x_1 + [4]x_2 POL(a(x_1)) = [4] + [1/4]x_1 POL(b(x_1)) = 0 POL(p(x_1, x_2)) = [4]x_1 + [4]x_2 The value of delta used in the strict ordering is 192. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: p(a(x0), p(b(x1), p(a(x2), x3))) -> p(x2, p(a(a(x0)), p(b(x1), x3))) ---------------------------------------- (8) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: p(a(x0), p(b(x1), p(a(x2), x3))) -> p(x2, p(a(a(x0)), p(b(x1), x3))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (10) YES