/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 472 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) TransformationProof [EQUIVALENT, 0 ms] (10) QDP (11) DependencyGraphProof [EQUIVALENT, 0 ms] (12) QDP (13) TransformationProof [EQUIVALENT, 0 ms] (14) QDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: B(y, z) -> C(c(y, z, z), a, a) B(y, z) -> C(y, z, z) C(f(z), f(c(a, x, a)), y) -> C(f(b(x, z)), c(z, y, a), a) C(f(z), f(c(a, x, a)), y) -> B(x, z) C(f(z), f(c(a, x, a)), y) -> C(z, y, a) The TRS R consists of the following rules: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: B(y, z) -> C(y, z, z) C(f(z), f(c(a, x, a)), y) -> C(f(b(x, z)), c(z, y, a), a) C(f(z), f(c(a, x, a)), y) -> B(x, z) C(f(z), f(c(a, x, a)), y) -> C(z, y, a) The TRS R consists of the following rules: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. B(y, z) -> C(y, z, z) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(B(x_1, x_2)) = [[2A]] + [[1A, 1A, 1A]] * x_1 + [[0A, 1A, 0A]] * x_2 >>> <<< POL(C(x_1, x_2, x_3)) = [[0A]] + [[0A, -I, 0A]] * x_1 + [[-I, 0A, -I]] * x_2 + [[-I, 0A, -I]] * x_3 >>> <<< POL(f(x_1)) = [[2A], [0A], [0A]] + [[0A, 1A, 0A], [1A, -I, 0A], [-I, -I, -I]] * x_1 >>> <<< POL(c(x_1, x_2, x_3)) = [[0A], [-I], [-I]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 + [[0A, 0A, 0A], [-I, 0A, -I], [0A, 0A, 0A]] * x_2 + [[0A, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_3 >>> <<< POL(a) = [[0A], [0A], [0A]] >>> <<< POL(b(x_1, x_2)) = [[2A], [1A], [0A]] + [[0A, 0A, 1A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 + [[-I, 0A, 0A], [-I, -I, -I], [-I, 1A, 0A]] * x_2 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: C(f(z), f(c(a, x, a)), y) -> C(f(b(x, z)), c(z, y, a), a) C(f(z), f(c(a, x, a)), y) -> B(x, z) C(f(z), f(c(a, x, a)), y) -> C(z, y, a) The TRS R consists of the following rules: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: C(f(z), f(c(a, x, a)), y) -> C(z, y, a) C(f(z), f(c(a, x, a)), y) -> C(f(b(x, z)), c(z, y, a), a) The TRS R consists of the following rules: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule C(f(z), f(c(a, x, a)), y) -> C(z, y, a) we obtained the following new rules [LPAR04]: (C(f(x0), f(c(a, x1, a)), a) -> C(x0, a, a),C(f(x0), f(c(a, x1, a)), a) -> C(x0, a, a)) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: C(f(z), f(c(a, x, a)), y) -> C(f(b(x, z)), c(z, y, a), a) C(f(x0), f(c(a, x1, a)), a) -> C(x0, a, a) The TRS R consists of the following rules: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: C(f(z), f(c(a, x, a)), y) -> C(f(b(x, z)), c(z, y, a), a) The TRS R consists of the following rules: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule C(f(z), f(c(a, x, a)), y) -> C(f(b(x, z)), c(z, y, a), a) we obtained the following new rules [LPAR04]: (C(f(y_2), f(c(a, x1, a)), a) -> C(f(b(x1, y_2)), c(y_2, a, a), a),C(f(y_2), f(c(a, x1, a)), a) -> C(f(b(x1, y_2)), c(y_2, a, a), a)) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: C(f(y_2), f(c(a, x1, a)), a) -> C(f(b(x1, y_2)), c(y_2, a, a), a) The TRS R consists of the following rules: b(y, z) -> f(c(c(y, z, z), a, a)) b(b(z, y), a) -> z c(f(z), f(c(a, x, a)), y) -> c(f(b(x, z)), c(z, y, a), a) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (16) TRUE