/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 13 ms] (2) QDP (3) MRRProof [EQUIVALENT, 36 ms] (4) QDP (5) QDPOrderProof [EQUIVALENT, 32 ms] (6) QDP (7) SemLabProof [SOUND, 226 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 0 ms] (10) QDP (11) MRRProof [EQUIVALENT, 8 ms] (12) QDP (13) MRRProof [EQUIVALENT, 5 ms] (14) QDP (15) QDPOrderProof [EQUIVALENT, 10 ms] (16) QDP (17) DependencyGraphProof [EQUIVALENT, 0 ms] (18) AND (19) QDP (20) QDPOrderProof [EQUIVALENT, 6 ms] (21) QDP (22) PisEmptyProof [EQUIVALENT, 0 ms] (23) YES (24) QDP (25) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (26) QDP (27) PisEmptyProof [EQUIVALENT, 0 ms] (28) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x)))) f(x, f(y, z)) -> f(f(x, y), z) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(f(a, b), c), x) -> F(b, f(a, f(c, f(b, x)))) F(f(f(a, b), c), x) -> F(a, f(c, f(b, x))) F(f(f(a, b), c), x) -> F(c, f(b, x)) F(f(f(a, b), c), x) -> F(b, x) F(x, f(y, z)) -> F(f(x, y), z) F(x, f(y, z)) -> F(x, y) The TRS R consists of the following rules: f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x)))) f(x, f(y, z)) -> f(f(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F(f(f(a, b), c), x) -> F(c, f(b, x)) F(f(f(a, b), c), x) -> F(b, x) Used ordering: Polynomial interpretation [POLO]: POL(F(x_1, x_2)) = 2*x_1 + 2*x_2 POL(a) = 1 POL(b) = 0 POL(c) = 0 POL(f(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(f(a, b), c), x) -> F(b, f(a, f(c, f(b, x)))) F(f(f(a, b), c), x) -> F(a, f(c, f(b, x))) F(x, f(y, z)) -> F(f(x, y), z) F(x, f(y, z)) -> F(x, y) The TRS R consists of the following rules: f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x)))) f(x, f(y, z)) -> f(f(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(f(f(a, b), c), x) -> F(b, f(a, f(c, f(b, x)))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. F(x1, x2) = x1 f(x1, x2) = x1 a = a b = b Knuth-Bendix order [KBO] with precedence:a > b and weight map: a=1 b=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f(x, f(y, z)) -> f(f(x, y), z) f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x)))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F(f(f(a, b), c), x) -> F(a, f(c, f(b, x))) F(x, f(y, z)) -> F(f(x, y), z) F(x, f(y, z)) -> F(x, y) The TRS R consists of the following rules: f(f(f(a, b), c), x) -> f(b, f(a, f(c, f(b, x)))) f(x, f(y, z)) -> f(f(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. a: 1 b: 0 c: 0 f: 0 F: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-0(b., x))) F.0-0(x, f.0-0(y, z)) -> F.0-0(f.0-0(x, y), z) F.0-0(x, f.0-1(y, z)) -> F.0-1(f.0-0(x, y), z) F.0-0(x, f.1-0(y, z)) -> F.0-0(f.0-1(x, y), z) F.0-0(x, f.1-1(y, z)) -> F.0-1(f.0-1(x, y), z) F.1-0(x, f.0-0(y, z)) -> F.0-0(f.1-0(x, y), z) F.1-0(x, f.0-1(y, z)) -> F.0-1(f.1-0(x, y), z) F.1-0(x, f.1-0(y, z)) -> F.0-0(f.1-1(x, y), z) F.1-0(x, f.1-1(y, z)) -> F.0-1(f.1-1(x, y), z) F.0-1(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-1(b., x))) F.0-0(x, f.0-0(y, z)) -> F.0-0(x, y) F.0-0(x, f.0-1(y, z)) -> F.0-0(x, y) F.0-0(x, f.1-0(y, z)) -> F.0-1(x, y) F.0-0(x, f.1-1(y, z)) -> F.0-1(x, y) F.1-0(x, f.0-0(y, z)) -> F.1-0(x, y) F.1-0(x, f.0-1(y, z)) -> F.1-0(x, y) F.1-0(x, f.1-0(y, z)) -> F.1-1(x, y) F.1-0(x, f.1-1(y, z)) -> F.1-1(x, y) The TRS R consists of the following rules: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.0-0(x, f.1-0(y, z)) -> f.0-0(f.0-1(x, y), z) f.0-0(x, f.1-1(y, z)) -> f.0-1(f.0-1(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) f.1-0(x, f.1-0(y, z)) -> f.0-0(f.1-1(x, y), z) f.1-0(x, f.1-1(y, z)) -> f.0-1(f.1-1(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(x, f.0-0(y, z)) -> F.0-0(f.1-0(x, y), z) F.0-0(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-0(b., x))) F.1-0(x, f.0-1(y, z)) -> F.0-1(f.1-0(x, y), z) F.0-1(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-1(b., x))) F.1-0(x, f.0-0(y, z)) -> F.1-0(x, y) F.1-0(x, f.1-0(y, z)) -> F.0-0(f.1-1(x, y), z) F.0-0(x, f.0-0(y, z)) -> F.0-0(x, y) F.0-0(x, f.0-0(y, z)) -> F.0-0(f.0-0(x, y), z) F.0-0(x, f.0-1(y, z)) -> F.0-0(x, y) F.0-0(x, f.0-1(y, z)) -> F.0-1(f.0-0(x, y), z) F.0-0(x, f.1-0(y, z)) -> F.0-0(f.0-1(x, y), z) F.0-0(x, f.1-0(y, z)) -> F.0-1(x, y) F.0-0(x, f.1-1(y, z)) -> F.0-1(x, y) F.0-0(x, f.1-1(y, z)) -> F.0-1(f.0-1(x, y), z) F.1-0(x, f.0-1(y, z)) -> F.1-0(x, y) The TRS R consists of the following rules: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.0-0(x, f.1-0(y, z)) -> f.0-0(f.0-1(x, y), z) f.0-0(x, f.1-1(y, z)) -> f.0-1(f.0-1(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) f.1-0(x, f.1-0(y, z)) -> f.0-0(f.1-1(x, y), z) f.1-0(x, f.1-1(y, z)) -> f.0-1(f.1-1(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F.1-0(x, f.1-0(y, z)) -> F.0-0(f.1-1(x, y), z) F.0-0(x, f.1-0(y, z)) -> F.0-0(f.0-1(x, y), z) F.0-0(x, f.1-0(y, z)) -> F.0-1(x, y) F.0-0(x, f.1-1(y, z)) -> F.0-1(x, y) F.0-0(x, f.1-1(y, z)) -> F.0-1(f.0-1(x, y), z) Strictly oriented rules of the TRS R: f.0-0(x, f.1-0(y, z)) -> f.0-0(f.0-1(x, y), z) f.0-0(x, f.1-1(y, z)) -> f.0-1(f.0-1(x, y), z) f.1-0(x, f.1-0(y, z)) -> f.0-0(f.1-1(x, y), z) f.1-0(x, f.1-1(y, z)) -> f.0-1(f.1-1(x, y), z) Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(F.0-1(x_1, x_2)) = x_1 + x_2 POL(F.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(a.) = 0 POL(b.) = 0 POL(c.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(x, f.0-0(y, z)) -> F.0-0(f.1-0(x, y), z) F.0-0(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-0(b., x))) F.1-0(x, f.0-1(y, z)) -> F.0-1(f.1-0(x, y), z) F.0-1(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-1(b., x))) F.1-0(x, f.0-0(y, z)) -> F.1-0(x, y) F.0-0(x, f.0-0(y, z)) -> F.0-0(x, y) F.0-0(x, f.0-0(y, z)) -> F.0-0(f.0-0(x, y), z) F.0-0(x, f.0-1(y, z)) -> F.0-0(x, y) F.0-0(x, f.0-1(y, z)) -> F.0-1(f.0-0(x, y), z) F.1-0(x, f.0-1(y, z)) -> F.1-0(x, y) The TRS R consists of the following rules: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F.0-0(x, f.0-1(y, z)) -> F.0-0(x, y) F.1-0(x, f.0-1(y, z)) -> F.1-0(x, y) Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 + x_2 POL(F.0-1(x_1, x_2)) = 1 + x_1 + x_2 POL(F.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(a.) = 0 POL(b.) = 0 POL(c.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-0(x_1, x_2)) = 1 + x_1 + x_2 ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(x, f.0-0(y, z)) -> F.0-0(f.1-0(x, y), z) F.0-0(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-0(b., x))) F.1-0(x, f.0-1(y, z)) -> F.0-1(f.1-0(x, y), z) F.0-1(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-1(b., x))) F.1-0(x, f.0-0(y, z)) -> F.1-0(x, y) F.0-0(x, f.0-0(y, z)) -> F.0-0(x, y) F.0-0(x, f.0-0(y, z)) -> F.0-0(f.0-0(x, y), z) F.0-0(x, f.0-1(y, z)) -> F.0-1(f.0-0(x, y), z) The TRS R consists of the following rules: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F.0-0(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-0(b., x))) F.0-1(f.0-0(f.1-0(a., b.), c.), x) -> F.1-0(a., f.0-0(c., f.0-1(b., x))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_1 POL(F.0-1(x_1, x_2)) = x_1 POL(F.1-0(x_1, x_2)) = x_1 + x_2 POL(a.) = 1 POL(b.) = 1 POL(c.) = 0 POL(f.0-0(x_1, x_2)) = x_1 POL(f.0-1(x_1, x_2)) = x_1 POL(f.1-0(x_1, x_2)) = x_1 + x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(x, f.0-0(y, z)) -> F.0-0(f.1-0(x, y), z) F.1-0(x, f.0-1(y, z)) -> F.0-1(f.1-0(x, y), z) F.1-0(x, f.0-0(y, z)) -> F.1-0(x, y) F.0-0(x, f.0-0(y, z)) -> F.0-0(x, y) F.0-0(x, f.0-0(y, z)) -> F.0-0(f.0-0(x, y), z) F.0-0(x, f.0-1(y, z)) -> F.0-1(f.0-0(x, y), z) The TRS R consists of the following rules: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes. ---------------------------------------- (18) Complex Obligation (AND) ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0(x, f.0-0(y, z)) -> F.0-0(f.0-0(x, y), z) F.0-0(x, f.0-0(y, z)) -> F.0-0(x, y) The TRS R consists of the following rules: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F.0-0(x, f.0-0(y, z)) -> F.0-0(f.0-0(x, y), z) F.0-0(x, f.0-0(y, z)) -> F.0-0(x, y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = x_2 POL(a.) = 0 POL(b.) = 0 POL(c.) = 0 POL(f.0-0(x_1, x_2)) = 1 + x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_2 POL(f.1-0(x_1, x_2)) = x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (21) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (23) YES ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(x, f.0-0(y, z)) -> F.1-0(x, y) The TRS R consists of the following rules: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: F.1-0(x, f.0-0(y, z)) -> F.1-0(x, y) The following rules are removed from R: f.0-0(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-0(b., x)))) f.0-1(f.0-0(f.1-0(a., b.), c.), x) -> f.0-0(b., f.1-0(a., f.0-0(c., f.0-1(b., x)))) f.0-0(x, f.0-0(y, z)) -> f.0-0(f.0-0(x, y), z) f.0-0(x, f.0-1(y, z)) -> f.0-1(f.0-0(x, y), z) f.1-0(x, f.0-0(y, z)) -> f.0-0(f.1-0(x, y), z) f.1-0(x, f.0-1(y, z)) -> f.0-1(f.1-0(x, y), z) Used ordering: POLO with Polynomial interpretation [POLO]: POL(F.1-0(x_1, x_2)) = x_1 + x_2 POL(f.0-0(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (26) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (28) YES