/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 1 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 1 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) NonInfProof [EQUIVALENT, 20 ms] (27) QDP (28) PisEmptyProof [EQUIVALENT, 0 ms] (29) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), x, add(x, y)) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The TRS R 2 is cond(true, x, y) -> cond(gr(x, y), x, add(x, y)) The signature Sigma is {cond_3} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), x, add(x, y)) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The set Q consists of the following terms: cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x, y) -> COND(gr(x, y), x, add(x, y)) COND(true, x, y) -> GR(x, y) COND(true, x, y) -> ADD(x, y) GR(s(x), s(y)) -> GR(x, y) ADD(s(x), y) -> ADD(x, y) The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), x, add(x, y)) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The set Q consists of the following terms: cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(x), y) -> ADD(x, y) The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), x, add(x, y)) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The set Q consists of the following terms: cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(x), y) -> ADD(x, y) R is empty. The set Q consists of the following terms: cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(s(x), y) -> ADD(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(s(x), y) -> ADD(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), x, add(x, y)) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The set Q consists of the following terms: cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) R is empty. The set Q consists of the following terms: cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GR(s(x), s(y)) -> GR(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x, y) -> COND(gr(x, y), x, add(x, y)) The TRS R consists of the following rules: cond(true, x, y) -> cond(gr(x, y), x, add(x, y)) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The set Q consists of the following terms: cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x, y) -> COND(gr(x, y), x, add(x, y)) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The set Q consists of the following terms: cond(true, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond(true, x0, x1) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x, y) -> COND(gr(x, y), x, add(x, y)) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) NonInfProof (EQUIVALENT) The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair COND(true, x, y) -> COND(gr(x, y), x, add(x, y)) the following chains were created: *We consider the chain COND(true, x0, x1) -> COND(gr(x0, x1), x0, add(x0, x1)), COND(true, x2, x3) -> COND(gr(x2, x3), x2, add(x2, x3)) which results in the following constraint: (1) (COND(gr(x0, x1), x0, add(x0, x1))=COND(true, x2, x3) ==> COND(true, x0, x1)_>=_COND(gr(x0, x1), x0, add(x0, x1))) We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint: (2) (gr(x0, x1)=true ==> COND(true, x0, x1)_>=_COND(gr(x0, x1), x0, add(x0, x1))) We simplified constraint (2) using rule (V) (with possible (I) afterwards) using induction on gr(x0, x1)=true which results in the following new constraints: (3) (true=true ==> COND(true, s(x5), 0)_>=_COND(gr(s(x5), 0), s(x5), add(s(x5), 0))) (4) (gr(x7, x6)=true & (gr(x7, x6)=true ==> COND(true, x7, x6)_>=_COND(gr(x7, x6), x7, add(x7, x6))) ==> COND(true, s(x7), s(x6))_>=_COND(gr(s(x7), s(x6)), s(x7), add(s(x7), s(x6)))) We simplified constraint (3) using rules (I), (II) which results in the following new constraint: (5) (COND(true, s(x5), 0)_>=_COND(gr(s(x5), 0), s(x5), add(s(x5), 0))) We simplified constraint (4) using rule (VI) where we applied the induction hypothesis (gr(x7, x6)=true ==> COND(true, x7, x6)_>=_COND(gr(x7, x6), x7, add(x7, x6))) with sigma = [ ] which results in the following new constraint: (6) (COND(true, x7, x6)_>=_COND(gr(x7, x6), x7, add(x7, x6)) ==> COND(true, s(x7), s(x6))_>=_COND(gr(s(x7), s(x6)), s(x7), add(s(x7), s(x6)))) To summarize, we get the following constraints P__>=_ for the following pairs. *COND(true, x, y) -> COND(gr(x, y), x, add(x, y)) *(COND(true, s(x5), 0)_>=_COND(gr(s(x5), 0), s(x5), add(s(x5), 0))) *(COND(true, x7, x6)_>=_COND(gr(x7, x6), x7, add(x7, x6)) ==> COND(true, s(x7), s(x6))_>=_COND(gr(s(x7), s(x6)), s(x7), add(s(x7), s(x6)))) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation [NONINF]: POL(0) = 0 POL(COND(x_1, x_2, x_3)) = -1 - x_1 + x_2 - x_3 POL(add(x_1, x_2)) = x_1 POL(c) = -1 POL(false) = 0 POL(gr(x_1, x_2)) = 0 POL(s(x_1)) = 1 + x_1 POL(true) = 0 The following pairs are in P_>: COND(true, x, y) -> COND(gr(x, y), x, add(x, y)) The following pairs are in P_bound: COND(true, x, y) -> COND(gr(x, y), x, add(x, y)) The following rules are usable: false -> gr(0, x) true -> gr(s(x), 0) gr(x, y) -> gr(s(x), s(y)) x -> add(0, x) s(add(x, y)) -> add(s(x), y) ---------------------------------------- (27) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) add(0, x) -> x add(s(x), y) -> s(add(x, y)) The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) add(0, x0) add(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (29) YES