/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) MRRProof [EQUIVALENT, 29 ms] (9) QDP (10) PisEmptyProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QDPOrderProof [EQUIVALENT, 34 ms] (16) QDP (17) PisEmptyProof [EQUIVALENT, 0 ms] (18) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) L(f(s(s(y)), f(z, w))) -> L(f(s(0), f(y, f(s(z), w)))) f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, f(s(s(y)), f(z, w))) -> F(s(x), f(y, f(s(z), w))) F(x, f(s(s(y)), f(z, w))) -> F(y, f(s(z), w)) F(x, f(s(s(y)), f(z, w))) -> F(s(z), w) L^1(f(s(s(y)), f(z, w))) -> L^1(f(s(0), f(y, f(s(z), w)))) L^1(f(s(s(y)), f(z, w))) -> F(s(0), f(y, f(s(z), w))) L^1(f(s(s(y)), f(z, w))) -> F(y, f(s(z), w)) L^1(f(s(s(y)), f(z, w))) -> F(s(z), w) F(x, f(s(s(y)), nil)) -> F(s(x), f(y, f(s(0), nil))) F(x, f(s(s(y)), nil)) -> F(y, f(s(0), nil)) F(x, f(s(s(y)), nil)) -> F(s(0), nil) The TRS R consists of the following rules: f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) L(f(s(s(y)), f(z, w))) -> L(f(s(0), f(y, f(s(z), w)))) f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 5 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, f(s(s(y)), f(z, w))) -> F(y, f(s(z), w)) F(x, f(s(s(y)), f(z, w))) -> F(s(x), f(y, f(s(z), w))) F(x, f(s(s(y)), f(z, w))) -> F(s(z), w) F(x, f(s(s(y)), nil)) -> F(s(x), f(y, f(s(0), nil))) The TRS R consists of the following rules: f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) L(f(s(s(y)), f(z, w))) -> L(f(s(0), f(y, f(s(z), w)))) f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, f(s(s(y)), f(z, w))) -> F(y, f(s(z), w)) F(x, f(s(s(y)), f(z, w))) -> F(s(x), f(y, f(s(z), w))) F(x, f(s(s(y)), f(z, w))) -> F(s(z), w) F(x, f(s(s(y)), nil)) -> F(s(x), f(y, f(s(0), nil))) The TRS R consists of the following rules: f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F(x, f(s(s(y)), f(z, w))) -> F(y, f(s(z), w)) F(x, f(s(s(y)), f(z, w))) -> F(s(x), f(y, f(s(z), w))) F(x, f(s(s(y)), f(z, w))) -> F(s(z), w) F(x, f(s(s(y)), nil)) -> F(s(x), f(y, f(s(0), nil))) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(F(x_1, x_2)) = x_1 + 2*x_2 POL(f(x_1, x_2)) = 2*x_1 + x_2 POL(nil) = 0 POL(s(x_1)) = 1 + x_1 ---------------------------------------- (9) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: L^1(f(s(s(y)), f(z, w))) -> L^1(f(s(0), f(y, f(s(z), w)))) The TRS R consists of the following rules: f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) L(f(s(s(y)), f(z, w))) -> L(f(s(0), f(y, f(s(z), w)))) f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: L^1(f(s(s(y)), f(z, w))) -> L^1(f(s(0), f(y, f(s(z), w)))) The TRS R consists of the following rules: f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. L^1(f(s(s(y)), f(z, w))) -> L^1(f(s(0), f(y, f(s(z), w)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( L^1_1(x_1) ) = max{0, x_1 - 1} POL( f_2(x_1, x_2) ) = max{0, x_1 + x_2 - 1} POL( s_1(x_1) ) = x_1 + 2 POL( nil ) = 0 POL( 0 ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) ---------------------------------------- (16) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: f(x, f(s(s(y)), nil)) -> f(s(x), f(y, f(s(0), nil))) f(x, f(s(s(y)), f(z, w))) -> f(s(x), f(y, f(s(z), w))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (18) YES