/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPOrderProof [EQUIVALENT, 26 ms] (20) QDP (21) DependencyGraphProof [EQUIVALENT, 0 ms] (22) TRUE (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QReductionProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPSizeChangeProof [EQUIVALENT, 0 ms] (36) YES (37) QDP (38) UsableRulesProof [EQUIVALENT, 0 ms] (39) QDP (40) QReductionProof [EQUIVALENT, 0 ms] (41) QDP (42) QDPOrderProof [EQUIVALENT, 22 ms] (43) QDP (44) DependencyGraphProof [EQUIVALENT, 0 ms] (45) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(X), s(Y)) -> EQ(X, Y) LE(s(X), s(Y)) -> LE(X, Y) MIN(cons(N, cons(M, L))) -> IFMIN(le(N, M), cons(N, cons(M, L))) MIN(cons(N, cons(M, L))) -> LE(N, M) IFMIN(true, cons(N, cons(M, L))) -> MIN(cons(N, L)) IFMIN(false, cons(N, cons(M, L))) -> MIN(cons(M, L)) REPLACE(N, M, cons(K, L)) -> IFREPL(eq(N, K), N, M, cons(K, L)) REPLACE(N, M, cons(K, L)) -> EQ(N, K) IFREPL(false, N, M, cons(K, L)) -> REPLACE(N, M, L) SELSORT(cons(N, L)) -> IFSELSORT(eq(N, min(cons(N, L))), cons(N, L)) SELSORT(cons(N, L)) -> EQ(N, min(cons(N, L))) SELSORT(cons(N, L)) -> MIN(cons(N, L)) IFSELSORT(true, cons(N, L)) -> SELSORT(L) IFSELSORT(false, cons(N, L)) -> MIN(cons(N, L)) IFSELSORT(false, cons(N, L)) -> SELSORT(replace(min(cons(N, L)), N, L)) IFSELSORT(false, cons(N, L)) -> REPLACE(min(cons(N, L)), N, L) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 6 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(X), s(Y)) -> LE(X, Y) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(X), s(Y)) -> LE(X, Y) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(X), s(Y)) -> LE(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(X), s(Y)) -> LE(X, Y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(cons(N, cons(M, L))) -> IFMIN(le(N, M), cons(N, cons(M, L))) IFMIN(true, cons(N, cons(M, L))) -> MIN(cons(N, L)) IFMIN(false, cons(N, cons(M, L))) -> MIN(cons(M, L)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(cons(N, cons(M, L))) -> IFMIN(le(N, M), cons(N, cons(M, L))) IFMIN(true, cons(N, cons(M, L))) -> MIN(cons(N, L)) IFMIN(false, cons(N, cons(M, L))) -> MIN(cons(M, L)) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(cons(N, cons(M, L))) -> IFMIN(le(N, M), cons(N, cons(M, L))) IFMIN(true, cons(N, cons(M, L))) -> MIN(cons(N, L)) IFMIN(false, cons(N, cons(M, L))) -> MIN(cons(M, L)) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IFMIN(true, cons(N, cons(M, L))) -> MIN(cons(N, L)) IFMIN(false, cons(N, cons(M, L))) -> MIN(cons(M, L)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IFMIN_2(x_1, x_2) ) = 2x_2 + 2 POL( le_2(x_1, x_2) ) = 0 POL( 0 ) = 0 POL( true ) = 2 POL( s_1(x_1) ) = 2x_1 + 2 POL( false ) = 2 POL( MIN_1(x_1) ) = 2x_1 + 2 POL( cons_2(x_1, x_2) ) = 2x_2 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(cons(N, cons(M, L))) -> IFMIN(le(N, M), cons(N, cons(M, L))) The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (22) TRUE ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(X), s(Y)) -> EQ(X, Y) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(X), s(Y)) -> EQ(X, Y) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(X), s(Y)) -> EQ(X, Y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(X), s(Y)) -> EQ(X, Y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: REPLACE(N, M, cons(K, L)) -> IFREPL(eq(N, K), N, M, cons(K, L)) IFREPL(false, N, M, cons(K, L)) -> REPLACE(N, M, L) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: REPLACE(N, M, cons(K, L)) -> IFREPL(eq(N, K), N, M, cons(K, L)) IFREPL(false, N, M, cons(K, L)) -> REPLACE(N, M, L) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: REPLACE(N, M, cons(K, L)) -> IFREPL(eq(N, K), N, M, cons(K, L)) IFREPL(false, N, M, cons(K, L)) -> REPLACE(N, M, L) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *IFREPL(false, N, M, cons(K, L)) -> REPLACE(N, M, L) The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3 *REPLACE(N, M, cons(K, L)) -> IFREPL(eq(N, K), N, M, cons(K, L)) The graph contains the following edges 1 >= 2, 2 >= 3, 3 >= 4 ---------------------------------------- (36) YES ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: IFSELSORT(true, cons(N, L)) -> SELSORT(L) SELSORT(cons(N, L)) -> IFSELSORT(eq(N, min(cons(N, L))), cons(N, L)) IFSELSORT(false, cons(N, L)) -> SELSORT(replace(min(cons(N, L)), N, L)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) selsort(nil) -> nil selsort(cons(N, L)) -> ifselsort(eq(N, min(cons(N, L))), cons(N, L)) ifselsort(true, cons(N, L)) -> cons(N, selsort(L)) ifselsort(false, cons(N, L)) -> cons(min(cons(N, L)), selsort(replace(min(cons(N, L)), N, L))) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: IFSELSORT(true, cons(N, L)) -> SELSORT(L) SELSORT(cons(N, L)) -> IFSELSORT(eq(N, min(cons(N, L))), cons(N, L)) IFSELSORT(false, cons(N, L)) -> SELSORT(replace(min(cons(N, L)), N, L)) The TRS R consists of the following rules: min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. selsort(nil) selsort(cons(x0, x1)) ifselsort(true, cons(x0, x1)) ifselsort(false, cons(x0, x1)) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: IFSELSORT(true, cons(N, L)) -> SELSORT(L) SELSORT(cons(N, L)) -> IFSELSORT(eq(N, min(cons(N, L))), cons(N, L)) IFSELSORT(false, cons(N, L)) -> SELSORT(replace(min(cons(N, L)), N, L)) The TRS R consists of the following rules: min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IFSELSORT(true, cons(N, L)) -> SELSORT(L) IFSELSORT(false, cons(N, L)) -> SELSORT(replace(min(cons(N, L)), N, L)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. IFSELSORT(x1, x2) = x2 cons(x1, x2) = cons(x2) SELSORT(x1) = x1 replace(x1, x2, x3) = x3 nil = nil ifrepl(x1, x2, x3, x4) = x4 Knuth-Bendix order [KBO] with precedence:trivial and weight map: cons_1=1 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: SELSORT(cons(N, L)) -> IFSELSORT(eq(N, min(cons(N, L))), cons(N, L)) The TRS R consists of the following rules: min(cons(0, nil)) -> 0 min(cons(s(N), nil)) -> s(N) min(cons(N, cons(M, L))) -> ifmin(le(N, M), cons(N, cons(M, L))) ifmin(true, cons(N, cons(M, L))) -> min(cons(N, L)) ifmin(false, cons(N, cons(M, L))) -> min(cons(M, L)) replace(N, M, nil) -> nil replace(N, M, cons(K, L)) -> ifrepl(eq(N, K), N, M, cons(K, L)) eq(0, 0) -> true eq(0, s(Y)) -> false eq(s(X), 0) -> false eq(s(X), s(Y)) -> eq(X, Y) ifrepl(true, N, M, cons(K, L)) -> cons(M, L) ifrepl(false, N, M, cons(K, L)) -> cons(K, replace(N, M, L)) le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(cons(0, nil)) min(cons(s(x0), nil)) min(cons(x0, cons(x1, x2))) ifmin(true, cons(x0, cons(x1, x2))) ifmin(false, cons(x0, cons(x1, x2))) replace(x0, x1, nil) replace(x0, x1, cons(x2, x3)) ifrepl(true, x0, x1, cons(x2, x3)) ifrepl(false, x0, x1, cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (45) TRUE