/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPOrderProof [EQUIVALENT, 0 ms] (12) QDP (13) DependencyGraphProof [EQUIVALENT, 0 ms] (14) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: nonZero(0) -> false nonZero(s(x)) -> true p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0) rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(x))) -> P(s(x)) RANDOM(x) -> RAND(x, 0) RAND(x, y) -> IF(nonZero(x), x, y) RAND(x, y) -> NONZERO(x) IF(true, x, y) -> RAND(p(x), id_inc(y)) IF(true, x, y) -> P(x) IF(true, x, y) -> ID_INC(y) The TRS R consists of the following rules: nonZero(0) -> false nonZero(s(x)) -> true p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0) rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(x))) -> P(s(x)) The TRS R consists of the following rules: nonZero(0) -> false nonZero(s(x)) -> true p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0) rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: P(s(s(x))) -> P(s(x)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *P(s(s(x))) -> P(s(x)) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: IF(true, x, y) -> RAND(p(x), id_inc(y)) RAND(x, y) -> IF(nonZero(x), x, y) The TRS R consists of the following rules: nonZero(0) -> false nonZero(s(x)) -> true p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0) rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF(true, x, y) -> RAND(p(x), id_inc(y)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic integers [ARCTIC,STERNAGEL_THIEMANN_RTA14]: <<< POL(IF(x_1, x_2, x_3)) = [[-1A]] + [[0A]] * x_1 + [[0A]] * x_2 + [[-I]] * x_3 >>> <<< POL(true) = [[1A]] >>> <<< POL(RAND(x_1, x_2)) = [[-1A]] + [[0A]] * x_1 + [[-I]] * x_2 >>> <<< POL(p(x_1)) = [[0A]] + [[-1A]] * x_1 >>> <<< POL(id_inc(x_1)) = [[0A]] + [[-1A]] * x_1 >>> <<< POL(nonZero(x_1)) = [[-I]] + [[0A]] * x_1 >>> <<< POL(s(x_1)) = [[1A]] + [[1A]] * x_1 >>> <<< POL(0) = [[0A]] >>> <<< POL(false) = [[0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) nonZero(0) -> false nonZero(s(x)) -> true ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: RAND(x, y) -> IF(nonZero(x), x, y) The TRS R consists of the following rules: nonZero(0) -> false nonZero(s(x)) -> true p(s(0)) -> 0 p(s(s(x))) -> s(p(s(x))) id_inc(x) -> x id_inc(x) -> s(x) random(x) -> rand(x, 0) rand(x, y) -> if(nonZero(x), x, y) if(false, x, y) -> y if(true, x, y) -> rand(p(x), id_inc(y)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (14) TRUE