/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 79 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 0 ms] (4) QTRS (5) AAECC Innermost [EQUIVALENT, 0 ms] (6) QTRS (7) DependencyPairsProof [EQUIVALENT, 0 ms] (8) QDP (9) DependencyGraphProof [EQUIVALENT, 1 ms] (10) AND (11) QDP (12) UsableRulesProof [EQUIVALENT, 0 ms] (13) QDP (14) QReductionProof [EQUIVALENT, 0 ms] (15) QDP (16) QDPSizeChangeProof [EQUIVALENT, 0 ms] (17) YES (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QReductionProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QReductionProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPSizeChangeProof [EQUIVALENT, 0 ms] (31) YES (32) QDP (33) UsableRulesProof [EQUIVALENT, 0 ms] (34) QDP (35) QReductionProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) DependencyGraphProof [EQUIVALENT, 0 ms] (40) QDP (41) TransformationProof [EQUIVALENT, 0 ms] (42) QDP (43) TransformationProof [EQUIVALENT, 0 ms] (44) QDP (45) DependencyGraphProof [EQUIVALENT, 0 ms] (46) QDP (47) TransformationProof [EQUIVALENT, 0 ms] (48) QDP (49) SemLabProof [SOUND, 68 ms] (50) QDP (51) DependencyGraphProof [EQUIVALENT, 0 ms] (52) QDP (53) UsableRulesReductionPairsProof [EQUIVALENT, 6 ms] (54) QDP (55) QDPOrderProof [EQUIVALENT, 6 ms] (56) QDP (57) DependencyGraphProof [EQUIVALENT, 0 ms] (58) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: tower(x) -> f(a, x, s(0)) f(a, 0, y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a) = 0 POL(b) = 0 POL(double(x_1)) = x_1 POL(exp(x_1)) = x_1 POL(f(x_1, x_2, x_3)) = x_1 + 2*x_2 + 2*x_3 POL(half(x_1)) = x_1 POL(s(x_1)) = x_1 POL(tower(x_1)) = 2 + 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: tower(x) -> f(a, x, s(0)) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(a, 0, y) -> y f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a) = 0 POL(b) = 0 POL(double(x_1)) = x_1 POL(exp(x_1)) = x_1 POL(f(x_1, x_2, x_3)) = 1 + x_1 + 2*x_2 + 2*x_3 POL(half(x_1)) = x_1 POL(s(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: f(a, 0, y) -> y ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) Q is empty. ---------------------------------------- (5) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) The TRS R 2 is f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) The signature Sigma is {f_3} ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) ---------------------------------------- (7) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, s(x), y) -> F(b, y, s(x)) F(b, y, x) -> F(a, half(x), exp(y)) F(b, y, x) -> HALF(x) F(b, y, x) -> EXP(y) EXP(s(x)) -> DOUBLE(exp(x)) EXP(s(x)) -> EXP(x) DOUBLE(s(x)) -> DOUBLE(x) HALF(0) -> DOUBLE(0) HALF(s(0)) -> HALF(0) HALF(s(s(x))) -> HALF(x) The TRS R consists of the following rules: f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 5 less nodes. ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) The TRS R consists of the following rules: f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) R is empty. The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOUBLE(s(x)) -> DOUBLE(x) The graph contains the following edges 1 > 1 ---------------------------------------- (17) YES ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) The TRS R consists of the following rules: f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HALF(s(s(x))) -> HALF(x) The graph contains the following edges 1 > 1 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: EXP(s(x)) -> EXP(x) The TRS R consists of the following rules: f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: EXP(s(x)) -> EXP(x) R is empty. The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: EXP(s(x)) -> EXP(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EXP(s(x)) -> EXP(x) The graph contains the following edges 1 > 1 ---------------------------------------- (31) YES ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: F(b, y, x) -> F(a, half(x), exp(y)) F(a, s(x), y) -> F(b, y, s(x)) The TRS R consists of the following rules: f(a, s(x), y) -> f(b, y, s(x)) f(b, y, x) -> f(a, half(x), exp(y)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: F(b, y, x) -> F(a, half(x), exp(y)) F(a, s(x), y) -> F(b, y, s(x)) The TRS R consists of the following rules: half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) The set Q consists of the following terms: f(a, s(x0), x1) f(b, x0, x1) exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(a, s(x0), x1) f(b, x0, x1) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: F(b, y, x) -> F(a, half(x), exp(y)) F(a, s(x), y) -> F(b, y, s(x)) The TRS R consists of the following rules: half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) The set Q consists of the following terms: exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(b, y, x) -> F(a, half(x), exp(y)) at position [1] we obtained the following new rules [LPAR04]: (F(b, y0, 0) -> F(a, double(0), exp(y0)),F(b, y0, 0) -> F(a, double(0), exp(y0))) (F(b, y0, s(0)) -> F(a, half(0), exp(y0)),F(b, y0, s(0)) -> F(a, half(0), exp(y0))) (F(b, y0, s(s(x0))) -> F(a, s(half(x0)), exp(y0)),F(b, y0, s(s(x0))) -> F(a, s(half(x0)), exp(y0))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, s(x), y) -> F(b, y, s(x)) F(b, y0, 0) -> F(a, double(0), exp(y0)) F(b, y0, s(0)) -> F(a, half(0), exp(y0)) F(b, y0, s(s(x0))) -> F(a, s(half(x0)), exp(y0)) The TRS R consists of the following rules: half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) The set Q consists of the following terms: exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: F(b, y0, s(0)) -> F(a, half(0), exp(y0)) F(a, s(x), y) -> F(b, y, s(x)) F(b, y0, s(s(x0))) -> F(a, s(half(x0)), exp(y0)) The TRS R consists of the following rules: half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) The set Q consists of the following terms: exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(b, y0, s(0)) -> F(a, half(0), exp(y0)) at position [1] we obtained the following new rules [LPAR04]: (F(b, y0, s(0)) -> F(a, double(0), exp(y0)),F(b, y0, s(0)) -> F(a, double(0), exp(y0))) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, s(x), y) -> F(b, y, s(x)) F(b, y0, s(s(x0))) -> F(a, s(half(x0)), exp(y0)) F(b, y0, s(0)) -> F(a, double(0), exp(y0)) The TRS R consists of the following rules: half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) The set Q consists of the following terms: exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule F(b, y0, s(0)) -> F(a, double(0), exp(y0)) at position [1] we obtained the following new rules [LPAR04]: (F(b, y0, s(0)) -> F(a, 0, exp(y0)),F(b, y0, s(0)) -> F(a, 0, exp(y0))) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, s(x), y) -> F(b, y, s(x)) F(b, y0, s(s(x0))) -> F(a, s(half(x0)), exp(y0)) F(b, y0, s(0)) -> F(a, 0, exp(y0)) The TRS R consists of the following rules: half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) The set Q consists of the following terms: exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: F(b, y0, s(s(x0))) -> F(a, s(half(x0)), exp(y0)) F(a, s(x), y) -> F(b, y, s(x)) The TRS R consists of the following rules: half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) The set Q consists of the following terms: exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(a, s(x), y) -> F(b, y, s(x)) we obtained the following new rules [LPAR04]: (F(a, s(s(y_1)), x1) -> F(b, x1, s(s(y_1))),F(a, s(s(y_1)), x1) -> F(b, x1, s(s(y_1)))) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: F(b, y0, s(s(x0))) -> F(a, s(half(x0)), exp(y0)) F(a, s(s(y_1)), x1) -> F(b, x1, s(s(y_1))) The TRS R consists of the following rules: half(0) -> double(0) half(s(0)) -> half(0) half(s(s(x))) -> s(half(x)) exp(0) -> s(0) exp(s(x)) -> double(exp(x)) double(0) -> 0 double(s(x)) -> s(s(double(x))) The set Q consists of the following terms: exp(0) exp(s(x0)) double(0) double(s(x0)) half(0) half(s(0)) half(s(s(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. s: 0 exp: 0 a: 1 b: 0 half: 0 0: 0 F: 0 double: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: F.0-0-0(b., y0, s.0(s.0(x0))) -> F.1-0-0(a., s.0(half.0(x0)), exp.0(y0)) F.1-0-0(a., s.0(s.0(y_1)), x1) -> F.0-0-0(b., x1, s.0(s.0(y_1))) F.1-0-1(a., s.0(s.0(y_1)), x1) -> F.0-1-0(b., x1, s.0(s.0(y_1))) F.1-0-0(a., s.0(s.1(y_1)), x1) -> F.0-0-0(b., x1, s.0(s.1(y_1))) F.1-0-1(a., s.0(s.1(y_1)), x1) -> F.0-1-0(b., x1, s.0(s.1(y_1))) F.0-0-0(b., y0, s.0(s.1(x0))) -> F.1-0-0(a., s.0(half.1(x0)), exp.0(y0)) F.0-1-0(b., y0, s.0(s.0(x0))) -> F.1-0-0(a., s.0(half.0(x0)), exp.1(y0)) F.0-1-0(b., y0, s.0(s.1(x0))) -> F.1-0-0(a., s.0(half.1(x0)), exp.1(y0)) The TRS R consists of the following rules: half.0(0.) -> double.0(0.) half.0(s.0(0.)) -> half.0(0.) half.0(s.0(s.0(x))) -> s.0(half.0(x)) half.0(s.0(s.1(x))) -> s.0(half.1(x)) exp.0(0.) -> s.0(0.) exp.0(s.0(x)) -> double.0(exp.0(x)) exp.0(s.1(x)) -> double.0(exp.1(x)) double.0(0.) -> 0. double.0(s.0(x)) -> s.0(s.0(double.0(x))) double.0(s.1(x)) -> s.0(s.0(double.1(x))) The set Q consists of the following terms: exp.0(0.) exp.0(s.0(x0)) exp.0(s.1(x0)) double.0(0.) double.0(s.0(x0)) double.0(s.1(x0)) half.0(0.) half.0(s.0(0.)) half.0(s.0(s.0(x0))) half.0(s.0(s.1(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes. ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0-0(a., s.0(s.0(y_1)), x1) -> F.0-0-0(b., x1, s.0(s.0(y_1))) F.0-0-0(b., y0, s.0(s.0(x0))) -> F.1-0-0(a., s.0(half.0(x0)), exp.0(y0)) The TRS R consists of the following rules: half.0(0.) -> double.0(0.) half.0(s.0(0.)) -> half.0(0.) half.0(s.0(s.0(x))) -> s.0(half.0(x)) half.0(s.0(s.1(x))) -> s.0(half.1(x)) exp.0(0.) -> s.0(0.) exp.0(s.0(x)) -> double.0(exp.0(x)) exp.0(s.1(x)) -> double.0(exp.1(x)) double.0(0.) -> 0. double.0(s.0(x)) -> s.0(s.0(double.0(x))) double.0(s.1(x)) -> s.0(s.0(double.1(x))) The set Q consists of the following terms: exp.0(0.) exp.0(s.0(x0)) exp.0(s.1(x0)) double.0(0.) double.0(s.0(x0)) double.0(s.1(x0)) half.0(0.) half.0(s.0(0.)) half.0(s.0(s.0(x0))) half.0(s.0(s.1(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. No dependency pairs are removed. The following rules are removed from R: half.0(s.0(s.1(x))) -> s.0(half.1(x)) exp.0(s.1(x)) -> double.0(exp.1(x)) double.0(s.1(x)) -> s.0(s.0(double.1(x))) Used ordering: POLO with Polynomial interpretation [POLO]: POL(0.) = 0 POL(F.0-0-0(x_1, x_2, x_3)) = 1 + x_1 + x_2 + x_3 POL(F.1-0-0(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(a.) = 1 POL(b.) = 0 POL(double.0(x_1)) = x_1 POL(double.1(x_1)) = 1 + x_1 POL(exp.0(x_1)) = x_1 POL(exp.1(x_1)) = 1 + x_1 POL(half.0(x_1)) = x_1 POL(half.1(x_1)) = 1 + x_1 POL(s.0(x_1)) = x_1 POL(s.1(x_1)) = 1 + x_1 ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0-0(a., s.0(s.0(y_1)), x1) -> F.0-0-0(b., x1, s.0(s.0(y_1))) F.0-0-0(b., y0, s.0(s.0(x0))) -> F.1-0-0(a., s.0(half.0(x0)), exp.0(y0)) The TRS R consists of the following rules: half.0(0.) -> double.0(0.) half.0(s.0(0.)) -> half.0(0.) half.0(s.0(s.0(x))) -> s.0(half.0(x)) exp.0(0.) -> s.0(0.) exp.0(s.0(x)) -> double.0(exp.0(x)) double.0(0.) -> 0. double.0(s.0(x)) -> s.0(s.0(double.0(x))) The set Q consists of the following terms: exp.0(0.) exp.0(s.0(x0)) exp.0(s.1(x0)) double.0(0.) double.0(s.0(x0)) double.0(s.1(x0)) half.0(0.) half.0(s.0(0.)) half.0(s.0(s.0(x0))) half.0(s.0(s.1(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F.0-0-0(b., y0, s.0(s.0(x0))) -> F.1-0-0(a., s.0(half.0(x0)), exp.0(y0)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(0.) = 0 POL(F.0-0-0(x_1, x_2, x_3)) = x_1 + x_3 POL(F.1-0-0(x_1, x_2, x_3)) = x_1 + x_2 POL(a.) = 0 POL(b.) = 0 POL(double.0(x_1)) = 0 POL(exp.0(x_1)) = 0 POL(half.0(x_1)) = x_1 POL(s.0(x_1)) = 1 + x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: half.0(0.) -> double.0(0.) half.0(s.0(0.)) -> half.0(0.) half.0(s.0(s.0(x))) -> s.0(half.0(x)) double.0(0.) -> 0. ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0-0(a., s.0(s.0(y_1)), x1) -> F.0-0-0(b., x1, s.0(s.0(y_1))) The TRS R consists of the following rules: half.0(0.) -> double.0(0.) half.0(s.0(0.)) -> half.0(0.) half.0(s.0(s.0(x))) -> s.0(half.0(x)) exp.0(0.) -> s.0(0.) exp.0(s.0(x)) -> double.0(exp.0(x)) double.0(0.) -> 0. double.0(s.0(x)) -> s.0(s.0(double.0(x))) The set Q consists of the following terms: exp.0(0.) exp.0(s.0(x0)) exp.0(s.1(x0)) double.0(0.) double.0(s.0(x0)) double.0(s.1(x0)) half.0(0.) half.0(s.0(0.)) half.0(s.0(s.0(x0))) half.0(s.0(s.1(x0))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (58) TRUE