/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 1 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) TransformationProof [EQUIVALENT, 0 ms] (27) QDP (28) TransformationProof [EQUIVALENT, 0 ms] (29) QDP (30) TransformationProof [EQUIVALENT, 0 ms] (31) QDP (32) TransformationProof [EQUIVALENT, 2 ms] (33) QDP (34) TransformationProof [EQUIVALENT, 0 ms] (35) QDP (36) DependencyGraphProof [EQUIVALENT, 0 ms] (37) AND (38) QDP (39) UsableRulesProof [EQUIVALENT, 0 ms] (40) QDP (41) QReductionProof [EQUIVALENT, 0 ms] (42) QDP (43) TransformationProof [EQUIVALENT, 0 ms] (44) QDP (45) TransformationProof [EQUIVALENT, 0 ms] (46) QDP (47) DependencyGraphProof [EQUIVALENT, 0 ms] (48) QDP (49) UsableRulesProof [EQUIVALENT, 0 ms] (50) QDP (51) TransformationProof [EQUIVALENT, 0 ms] (52) QDP (53) DependencyGraphProof [EQUIVALENT, 0 ms] (54) QDP (55) UsableRulesProof [EQUIVALENT, 0 ms] (56) QDP (57) QReductionProof [EQUIVALENT, 0 ms] (58) QDP (59) TransformationProof [EQUIVALENT, 0 ms] (60) QDP (61) DependencyGraphProof [EQUIVALENT, 0 ms] (62) QDP (63) UsableRulesProof [EQUIVALENT, 0 ms] (64) QDP (65) TransformationProof [EQUIVALENT, 0 ms] (66) QDP (67) DependencyGraphProof [EQUIVALENT, 0 ms] (68) TRUE (69) QDP (70) UsableRulesProof [EQUIVALENT, 0 ms] (71) QDP (72) QReductionProof [EQUIVALENT, 0 ms] (73) QDP (74) QDPSizeChangeProof [EQUIVALENT, 0 ms] (75) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false The TRS R 2 is cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) The signature Sigma is {cond1_3, cond2_3} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, x, y) -> COND2(gr(y, 0), x, y) COND1(true, x, y) -> GR(y, 0) COND2(true, x, y) -> COND2(gr(y, 0), p(x), p(y)) COND2(true, x, y) -> GR(y, 0) COND2(true, x, y) -> P(x) COND2(true, x, y) -> P(y) COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) COND2(false, x, y) -> AND(eq(x, y), gr(x, 0)) COND2(false, x, y) -> EQ(x, y) COND2(false, x, y) -> GR(x, 0) GR(s(x), s(y)) -> GR(x, y) EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x), s(y)) -> EQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) R is empty. The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: GR(s(x), s(y)) -> GR(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GR(s(x), s(y)) -> GR(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x, y) -> COND2(gr(y, 0), p(x), p(y)) COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) COND1(true, x, y) -> COND2(gr(y, 0), x, y) The TRS R consists of the following rules: cond1(true, x, y) -> cond2(gr(y, 0), x, y) cond2(true, x, y) -> cond2(gr(y, 0), p(x), p(y)) cond2(false, x, y) -> cond1(and(eq(x, y), gr(x, 0)), x, y) gr(0, x) -> false gr(s(x), 0) -> true gr(s(x), s(y)) -> gr(x, y) p(0) -> 0 p(s(x)) -> x eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x, y) -> COND2(gr(y, 0), p(x), p(y)) COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) COND1(true, x, y) -> COND2(gr(y, 0), x, y) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond1(true, x0, x1) cond2(true, x0, x1) cond2(false, x0, x1) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, x, y) -> COND2(gr(y, 0), p(x), p(y)) COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) COND1(true, x, y) -> COND2(gr(y, 0), x, y) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule COND2(true, x, y) -> COND2(gr(y, 0), p(x), p(y)) at position [0] we obtained the following new rules [LPAR04]: (COND2(true, y0, 0) -> COND2(false, p(y0), p(0)),COND2(true, y0, 0) -> COND2(false, p(y0), p(0))) (COND2(true, y0, s(x0)) -> COND2(true, p(y0), p(s(x0))),COND2(true, y0, s(x0)) -> COND2(true, p(y0), p(s(x0)))) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) COND1(true, x, y) -> COND2(gr(y, 0), x, y) COND2(true, y0, 0) -> COND2(false, p(y0), p(0)) COND2(true, y0, s(x0)) -> COND2(true, p(y0), p(s(x0))) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND2(true, y0, 0) -> COND2(false, p(y0), p(0)) at position [2] we obtained the following new rules [LPAR04]: (COND2(true, y0, 0) -> COND2(false, p(y0), 0),COND2(true, y0, 0) -> COND2(false, p(y0), 0)) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) COND1(true, x, y) -> COND2(gr(y, 0), x, y) COND2(true, y0, s(x0)) -> COND2(true, p(y0), p(s(x0))) COND2(true, y0, 0) -> COND2(false, p(y0), 0) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND2(true, y0, s(x0)) -> COND2(true, p(y0), p(s(x0))) at position [2] we obtained the following new rules [LPAR04]: (COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0),COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0)) ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) COND1(true, x, y) -> COND2(gr(y, 0), x, y) COND2(true, y0, 0) -> COND2(false, p(y0), 0) COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule COND1(true, x, y) -> COND2(gr(y, 0), x, y) at position [0] we obtained the following new rules [LPAR04]: (COND1(true, y0, 0) -> COND2(false, y0, 0),COND1(true, y0, 0) -> COND2(false, y0, 0)) (COND1(true, y0, s(x0)) -> COND2(true, y0, s(x0)),COND1(true, y0, s(x0)) -> COND2(true, y0, s(x0))) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) COND2(true, y0, 0) -> COND2(false, p(y0), 0) COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0) COND1(true, y0, 0) -> COND2(false, y0, 0) COND1(true, y0, s(x0)) -> COND2(true, y0, s(x0)) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule COND2(false, x, y) -> COND1(and(eq(x, y), gr(x, 0)), x, y) we obtained the following new rules [LPAR04]: (COND2(false, y_0, 0) -> COND1(and(eq(y_0, 0), gr(y_0, 0)), y_0, 0),COND2(false, y_0, 0) -> COND1(and(eq(y_0, 0), gr(y_0, 0)), y_0, 0)) ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, y0, 0) -> COND2(false, p(y0), 0) COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0) COND1(true, y0, 0) -> COND2(false, y0, 0) COND1(true, y0, s(x0)) -> COND2(true, y0, s(x0)) COND2(false, y_0, 0) -> COND1(and(eq(y_0, 0), gr(y_0, 0)), y_0, 0) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes. ---------------------------------------- (37) Complex Obligation (AND) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, y_0, 0) -> COND1(and(eq(y_0, 0), gr(y_0, 0)), y_0, 0) COND1(true, y0, 0) -> COND2(false, y0, 0) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, y_0, 0) -> COND1(and(eq(y_0, 0), gr(y_0, 0)), y_0, 0) COND1(true, y0, 0) -> COND2(false, y0, 0) The TRS R consists of the following rules: eq(0, 0) -> true eq(s(x), 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. p(0) p(s(x0)) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, y_0, 0) -> COND1(and(eq(y_0, 0), gr(y_0, 0)), y_0, 0) COND1(true, y0, 0) -> COND2(false, y0, 0) The TRS R consists of the following rules: eq(0, 0) -> true eq(s(x), 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule COND2(false, y_0, 0) -> COND1(and(eq(y_0, 0), gr(y_0, 0)), y_0, 0) at position [0] we obtained the following new rules [LPAR04]: (COND2(false, 0, 0) -> COND1(and(true, gr(0, 0)), 0, 0),COND2(false, 0, 0) -> COND1(and(true, gr(0, 0)), 0, 0)) (COND2(false, s(x0), 0) -> COND1(and(false, gr(s(x0), 0)), s(x0), 0),COND2(false, s(x0), 0) -> COND1(and(false, gr(s(x0), 0)), s(x0), 0)) (COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0),COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0)) (COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0),COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, 0, 0) -> COND1(and(true, gr(0, 0)), 0, 0) COND2(false, s(x0), 0) -> COND1(and(false, gr(s(x0), 0)), s(x0), 0) COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) The TRS R consists of the following rules: eq(0, 0) -> true eq(s(x), 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND2(false, 0, 0) -> COND1(and(true, gr(0, 0)), 0, 0) at position [0,1] we obtained the following new rules [LPAR04]: (COND2(false, 0, 0) -> COND1(and(true, false), 0, 0),COND2(false, 0, 0) -> COND1(and(true, false), 0, 0)) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, s(x0), 0) -> COND1(and(false, gr(s(x0), 0)), s(x0), 0) COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) COND2(false, 0, 0) -> COND1(and(true, false), 0, 0) The TRS R consists of the following rules: eq(0, 0) -> true eq(s(x), 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, s(x0), 0) -> COND1(and(false, gr(s(x0), 0)), s(x0), 0) COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) The TRS R consists of the following rules: eq(0, 0) -> true eq(s(x), 0) -> false gr(0, x) -> false gr(s(x), 0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, s(x0), 0) -> COND1(and(false, gr(s(x0), 0)), s(x0), 0) COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false eq(0, 0) -> true and(x, false) -> false gr(s(x), 0) -> true The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND2(false, s(x0), 0) -> COND1(and(false, gr(s(x0), 0)), s(x0), 0) at position [0] we obtained the following new rules [LPAR04]: (COND2(false, s(x0), 0) -> COND1(false, s(x0), 0),COND2(false, s(x0), 0) -> COND1(false, s(x0), 0)) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) COND2(false, s(x0), 0) -> COND1(false, s(x0), 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false eq(0, 0) -> true and(x, false) -> false gr(s(x), 0) -> true The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false eq(0, 0) -> true and(x, false) -> false gr(s(x), 0) -> true The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false eq(0, 0) -> true and(x, false) -> false The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false eq(0, 0) -> true and(x, false) -> false The set Q consists of the following terms: eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND2(false, 0, 0) -> COND1(and(eq(0, 0), false), 0, 0) at position [0] we obtained the following new rules [LPAR04]: (COND2(false, 0, 0) -> COND1(false, 0, 0),COND2(false, 0, 0) -> COND1(false, 0, 0)) ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) COND2(false, 0, 0) -> COND1(false, 0, 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false eq(0, 0) -> true and(x, false) -> false The set Q consists of the following terms: eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) COND1(true, y0, 0) -> COND2(false, y0, 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false eq(0, 0) -> true and(x, false) -> false The set Q consists of the following terms: eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) COND1(true, y0, 0) -> COND2(false, y0, 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false The set Q consists of the following terms: eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule COND2(false, s(x0), 0) -> COND1(and(eq(s(x0), 0), true), s(x0), 0) at position [0,0] we obtained the following new rules [LPAR04]: (COND2(false, s(x0), 0) -> COND1(and(false, true), s(x0), 0),COND2(false, s(x0), 0) -> COND1(and(false, true), s(x0), 0)) ---------------------------------------- (66) Obligation: Q DP problem: The TRS P consists of the following rules: COND1(true, y0, 0) -> COND2(false, y0, 0) COND2(false, s(x0), 0) -> COND1(and(false, true), s(x0), 0) The TRS R consists of the following rules: eq(s(x), 0) -> false and(true, true) -> true and(false, x) -> false The set Q consists of the following terms: eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (67) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. ---------------------------------------- (68) TRUE ---------------------------------------- (69) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0) The TRS R consists of the following rules: gr(0, x) -> false gr(s(x), 0) -> true eq(0, 0) -> true eq(s(x), 0) -> false eq(0, s(x)) -> false eq(s(x), s(y)) -> eq(x, y) and(true, true) -> true and(false, x) -> false and(x, false) -> false p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (70) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (71) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) p(0) p(s(x0)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (72) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. gr(0, x0) gr(s(x0), 0) gr(s(x0), s(x1)) eq(0, 0) eq(s(x0), 0) eq(0, s(x0)) eq(s(x0), s(x1)) and(true, true) and(false, x0) and(x0, false) ---------------------------------------- (73) Obligation: Q DP problem: The TRS P consists of the following rules: COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0) The TRS R consists of the following rules: p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (74) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *COND2(true, y0, s(x0)) -> COND2(true, p(y0), x0) The graph contains the following edges 1 >= 1, 3 > 3 ---------------------------------------- (75) YES