/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) QDPOrderProof [EQUIVALENT, 25 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: CIRC(cons(a, s), t) -> MSUBST(a, t) CIRC(cons(a, s), t) -> CIRC(s, t) CIRC(cons(lift, s), cons(a, t)) -> CIRC(s, t) CIRC(cons(lift, s), cons(lift, t)) -> CIRC(s, t) CIRC(circ(s, t), u) -> CIRC(s, circ(t, u)) CIRC(circ(s, t), u) -> CIRC(t, u) CIRC(cons(lift, s), circ(cons(lift, t), u)) -> CIRC(cons(lift, circ(s, t)), u) CIRC(cons(lift, s), circ(cons(lift, t), u)) -> CIRC(s, t) MSUBST(msubst(a, s), t) -> MSUBST(a, circ(s, t)) MSUBST(msubst(a, s), t) -> CIRC(s, t) The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. CIRC(cons(a, s), t) -> MSUBST(a, t) CIRC(cons(a, s), t) -> CIRC(s, t) CIRC(cons(lift, s), cons(a, t)) -> CIRC(s, t) CIRC(cons(lift, s), cons(lift, t)) -> CIRC(s, t) CIRC(cons(lift, s), circ(cons(lift, t), u)) -> CIRC(cons(lift, circ(s, t)), u) CIRC(cons(lift, s), circ(cons(lift, t), u)) -> CIRC(s, t) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO]: POL(CIRC(x_1, x_2)) = x_1 + x_1*x_2 POL(MSUBST(x_1, x_2)) = x_1 + x_1*x_2 POL(circ(x_1, x_2)) = x_1 + x_1*x_2 + x_2 POL(cons(x_1, x_2)) = 1 + x_1 + x_2 POL(id) = 1 POL(lift) = 0 POL(msubst(x_1, x_2)) = x_1 + x_1*x_2 + x_2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) msubst(a, id) -> a ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: CIRC(circ(s, t), u) -> CIRC(s, circ(t, u)) CIRC(circ(s, t), u) -> CIRC(t, u) MSUBST(msubst(a, s), t) -> MSUBST(a, circ(s, t)) MSUBST(msubst(a, s), t) -> CIRC(s, t) The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: CIRC(circ(s, t), u) -> CIRC(t, u) CIRC(circ(s, t), u) -> CIRC(s, circ(t, u)) The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CIRC(circ(s, t), u) -> CIRC(t, u) The graph contains the following edges 1 > 1, 2 >= 2 *CIRC(circ(s, t), u) -> CIRC(s, circ(t, u)) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: MSUBST(msubst(a, s), t) -> MSUBST(a, circ(s, t)) The TRS R consists of the following rules: circ(cons(a, s), t) -> cons(msubst(a, t), circ(s, t)) circ(cons(lift, s), cons(a, t)) -> cons(a, circ(s, t)) circ(cons(lift, s), cons(lift, t)) -> cons(lift, circ(s, t)) circ(circ(s, t), u) -> circ(s, circ(t, u)) circ(s, id) -> s circ(id, s) -> s circ(cons(lift, s), circ(cons(lift, t), u)) -> circ(cons(lift, circ(s, t)), u) subst(a, id) -> a msubst(a, id) -> a msubst(msubst(a, s), t) -> msubst(a, circ(s, t)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MSUBST(msubst(a, s), t) -> MSUBST(a, circ(s, t)) The graph contains the following edges 1 > 1 ---------------------------------------- (12) YES