/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) QDP (7) TransformationProof [EQUIVALENT, 0 ms] (8) QDP (9) TransformationProof [EQUIVALENT, 0 ms] (10) QDP (11) TransformationProof [EQUIVALENT, 0 ms] (12) QDP (13) TransformationProof [EQUIVALENT, 0 ms] (14) QDP (15) TransformationProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) TransformationProof [EQUIVALENT, 0 ms] (20) QDP (21) SemLabProof [SOUND, 174 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) QDP (25) MRRProof [EQUIVALENT, 13 ms] (26) QDP (27) DependencyGraphProof [EQUIVALENT, 0 ms] (28) QDP (29) MRRProof [EQUIVALENT, 8 ms] (30) QDP (31) PisEmptyProof [EQUIVALENT, 0 ms] (32) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, f(y, a)) -> F(f(a, f(h(x), y)), a) F(x, f(y, a)) -> F(a, f(h(x), y)) F(x, f(y, a)) -> F(h(x), y) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, f(y, a)) -> F(h(x), y) F(x, f(y, a)) -> F(a, f(h(x), y)) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(x, f(y, a)) -> F(h(x), y) we obtained the following new rules [LPAR04]: (F(h(z0), f(x1, a)) -> F(h(h(z0)), x1),F(h(z0), f(x1, a)) -> F(h(h(z0)), x1)) (F(a, f(x1, a)) -> F(h(a), x1),F(a, f(x1, a)) -> F(h(a), x1)) ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, f(y, a)) -> F(a, f(h(x), y)) F(h(z0), f(x1, a)) -> F(h(h(z0)), x1) F(a, f(x1, a)) -> F(h(a), x1) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(x, f(y, a)) -> F(a, f(h(x), y)) we obtained the following new rules [LPAR04]: (F(a, f(x1, a)) -> F(a, f(h(a), x1)),F(a, f(x1, a)) -> F(a, f(h(a), x1))) (F(h(h(z0)), f(x1, a)) -> F(a, f(h(h(h(z0))), x1)),F(h(h(z0)), f(x1, a)) -> F(a, f(h(h(h(z0))), x1))) (F(h(a), f(x1, a)) -> F(a, f(h(h(a)), x1)),F(h(a), f(x1, a)) -> F(a, f(h(h(a)), x1))) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F(h(z0), f(x1, a)) -> F(h(h(z0)), x1) F(a, f(x1, a)) -> F(h(a), x1) F(a, f(x1, a)) -> F(a, f(h(a), x1)) F(h(h(z0)), f(x1, a)) -> F(a, f(h(h(h(z0))), x1)) F(h(a), f(x1, a)) -> F(a, f(h(h(a)), x1)) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(h(z0), f(x1, a)) -> F(h(h(z0)), x1) we obtained the following new rules [LPAR04]: (F(h(h(z0)), f(x1, a)) -> F(h(h(h(z0))), x1),F(h(h(z0)), f(x1, a)) -> F(h(h(h(z0))), x1)) (F(h(a), f(x1, a)) -> F(h(h(a)), x1),F(h(a), f(x1, a)) -> F(h(h(a)), x1)) ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, f(x1, a)) -> F(h(a), x1) F(a, f(x1, a)) -> F(a, f(h(a), x1)) F(h(h(z0)), f(x1, a)) -> F(a, f(h(h(h(z0))), x1)) F(h(a), f(x1, a)) -> F(a, f(h(h(a)), x1)) F(h(h(z0)), f(x1, a)) -> F(h(h(h(z0))), x1) F(h(a), f(x1, a)) -> F(h(h(a)), x1) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule F(h(h(z0)), f(x1, a)) -> F(a, f(h(h(h(z0))), x1)) we obtained the following new rules [LPAR04]: (F(h(h(h(z0))), f(x1, a)) -> F(a, f(h(h(h(h(z0)))), x1)),F(h(h(h(z0))), f(x1, a)) -> F(a, f(h(h(h(h(z0)))), x1))) (F(h(h(a)), f(x1, a)) -> F(a, f(h(h(h(a))), x1)),F(h(h(a)), f(x1, a)) -> F(a, f(h(h(h(a))), x1))) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, f(x1, a)) -> F(h(a), x1) F(a, f(x1, a)) -> F(a, f(h(a), x1)) F(h(a), f(x1, a)) -> F(a, f(h(h(a)), x1)) F(h(h(z0)), f(x1, a)) -> F(h(h(h(z0))), x1) F(h(a), f(x1, a)) -> F(h(h(a)), x1) F(h(h(h(z0))), f(x1, a)) -> F(a, f(h(h(h(h(z0)))), x1)) F(h(h(a)), f(x1, a)) -> F(a, f(h(h(h(a))), x1)) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(a, f(x1, a)) -> F(h(a), x1) we obtained the following new rules [LPAR04]: (F(a, f(f(y_0, a), a)) -> F(h(a), f(y_0, a)),F(a, f(f(y_0, a), a)) -> F(h(a), f(y_0, a))) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, f(x1, a)) -> F(a, f(h(a), x1)) F(h(a), f(x1, a)) -> F(a, f(h(h(a)), x1)) F(h(h(z0)), f(x1, a)) -> F(h(h(h(z0))), x1) F(h(a), f(x1, a)) -> F(h(h(a)), x1) F(h(h(h(z0))), f(x1, a)) -> F(a, f(h(h(h(h(z0)))), x1)) F(h(h(a)), f(x1, a)) -> F(a, f(h(h(h(a))), x1)) F(a, f(f(y_0, a), a)) -> F(h(a), f(y_0, a)) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(h(h(z0)), f(x1, a)) -> F(h(h(h(z0))), x1) we obtained the following new rules [LPAR04]: (F(h(h(x0)), f(f(y_1, a), a)) -> F(h(h(h(x0))), f(y_1, a)),F(h(h(x0)), f(f(y_1, a), a)) -> F(h(h(h(x0))), f(y_1, a))) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, f(x1, a)) -> F(a, f(h(a), x1)) F(h(a), f(x1, a)) -> F(a, f(h(h(a)), x1)) F(h(a), f(x1, a)) -> F(h(h(a)), x1) F(h(h(h(z0))), f(x1, a)) -> F(a, f(h(h(h(h(z0)))), x1)) F(h(h(a)), f(x1, a)) -> F(a, f(h(h(h(a))), x1)) F(a, f(f(y_0, a), a)) -> F(h(a), f(y_0, a)) F(h(h(x0)), f(f(y_1, a), a)) -> F(h(h(h(x0))), f(y_1, a)) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule F(h(a), f(x1, a)) -> F(h(h(a)), x1) we obtained the following new rules [LPAR04]: (F(h(a), f(f(y_0, a), a)) -> F(h(h(a)), f(y_0, a)),F(h(a), f(f(y_0, a), a)) -> F(h(h(a)), f(y_0, a))) (F(h(a), f(f(f(y_1, a), a), a)) -> F(h(h(a)), f(f(y_1, a), a)),F(h(a), f(f(f(y_1, a), a), a)) -> F(h(h(a)), f(f(y_1, a), a))) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: F(a, f(x1, a)) -> F(a, f(h(a), x1)) F(h(a), f(x1, a)) -> F(a, f(h(h(a)), x1)) F(h(h(h(z0))), f(x1, a)) -> F(a, f(h(h(h(h(z0)))), x1)) F(h(h(a)), f(x1, a)) -> F(a, f(h(h(h(a))), x1)) F(a, f(f(y_0, a), a)) -> F(h(a), f(y_0, a)) F(h(h(x0)), f(f(y_1, a), a)) -> F(h(h(h(x0))), f(y_1, a)) F(h(a), f(f(y_0, a), a)) -> F(h(h(a)), f(y_0, a)) F(h(a), f(f(f(y_1, a), a), a)) -> F(h(h(a)), f(f(y_1, a), a)) The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(a, f(h(x), y)), a) The set Q consists of the following terms: f(x0, f(x1, a)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) SemLabProof (SOUND) We found the following model for the rules of the TRSs R and P. Interpretation over the domain with elements from 0 to 1. a: 1 f: 0 h: 0 F: 0 By semantic labelling [SEMLAB] we obtain the following labelled QDP problem. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(a., f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.1(a.), x1)) F.1-0(a., f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.1(a.), x1)) F.1-0(a., f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.1(a.), f.0-1(y_0, a.)) F.1-0(a., f.0-1(f.1-1(y_0, a.), a.)) -> F.0-0(h.1(a.), f.1-1(y_0, a.)) F.0-0(h.1(a.), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.1(a.)), x1)) F.0-0(h.1(a.), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.1(a.)), x1)) F.0-0(h.0(h.0(h.0(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.0(z0)))), x1)) F.0-0(h.0(h.0(h.0(z0))), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.0(h.0(z0)))), x1)) F.0-0(h.0(h.0(h.1(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.1(z0)))), x1)) F.0-0(h.0(h.0(h.1(z0))), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.0(h.1(z0)))), x1)) F.0-0(h.0(h.1(a.)), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.1(a.))), x1)) F.0-0(h.0(h.1(a.)), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.1(a.))), x1)) F.0-0(h.1(a.), f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(y_0, a.)) F.0-0(h.1(a.), f.0-1(f.1-1(y_0, a.), a.)) -> F.0-0(h.0(h.1(a.)), f.1-1(y_0, a.)) F.0-0(h.1(a.), f.0-1(f.0-1(f.0-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.0-1(y_1, a.), a.)) F.0-0(h.1(a.), f.0-1(f.0-1(f.1-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.1-1(y_1, a.), a.)) F.0-0(h.0(h.0(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.0(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(x0)), f.0-1(f.1-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.0(x0))), f.1-1(y_1, a.)) F.0-0(h.0(h.1(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.1(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.1(x0)), f.0-1(f.1-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.1(x0))), f.1-1(y_1, a.)) The TRS R consists of the following rules: f.0-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.0(x), y)), a.) f.0-0(x, f.1-1(y, a.)) -> f.0-1(f.1-0(a., f.0-1(h.0(x), y)), a.) f.1-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.1(x), y)), a.) f.1-0(x, f.1-1(y, a.)) -> f.0-1(f.1-0(a., f.0-1(h.1(x), y)), a.) The set Q consists of the following terms: f.0-0(x0, f.0-1(x1, a.)) f.0-0(x0, f.1-1(x1, a.)) f.1-0(x0, f.0-1(x1, a.)) f.1-0(x0, f.1-1(x1, a.)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(a., f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.1(a.), x1)) F.1-0(a., f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.1(a.), f.0-1(y_0, a.)) F.0-0(h.1(a.), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.1(a.)), x1)) F.0-0(h.1(a.), f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(y_0, a.)) F.0-0(h.0(h.1(a.)), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.1(a.))), x1)) F.0-0(h.0(h.1(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.1(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(h.1(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.1(z0)))), x1)) F.0-0(h.0(h.0(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.0(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(h.0(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.0(z0)))), x1)) F.0-0(h.0(h.0(x0)), f.0-1(f.1-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.0(x0))), f.1-1(y_1, a.)) F.0-0(h.0(h.0(h.0(z0))), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.0(h.0(z0)))), x1)) F.0-0(h.0(h.1(x0)), f.0-1(f.1-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.1(x0))), f.1-1(y_1, a.)) F.0-0(h.0(h.0(h.1(z0))), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.0(h.1(z0)))), x1)) F.0-0(h.1(a.), f.0-1(f.1-1(y_0, a.), a.)) -> F.0-0(h.0(h.1(a.)), f.1-1(y_0, a.)) F.0-0(h.0(h.1(a.)), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.1(a.))), x1)) F.0-0(h.1(a.), f.0-1(f.0-1(f.0-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.0-1(y_1, a.), a.)) F.0-0(h.1(a.), f.0-1(f.0-1(f.1-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.1-1(y_1, a.), a.)) The TRS R consists of the following rules: f.0-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.0(x), y)), a.) f.0-0(x, f.1-1(y, a.)) -> f.0-1(f.1-0(a., f.0-1(h.0(x), y)), a.) f.1-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.1(x), y)), a.) f.1-0(x, f.1-1(y, a.)) -> f.0-1(f.1-0(a., f.0-1(h.1(x), y)), a.) The set Q consists of the following terms: f.0-0(x0, f.0-1(x1, a.)) f.0-0(x0, f.1-1(x1, a.)) f.1-0(x0, f.0-1(x1, a.)) f.1-0(x0, f.1-1(x1, a.)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F.0-0(h.0(h.0(h.0(z0))), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.0(h.0(z0)))), x1)) F.0-0(h.0(h.0(h.1(z0))), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.0(h.1(z0)))), x1)) F.0-0(h.0(h.1(a.)), f.1-1(x1, a.)) -> F.1-0(a., f.0-1(h.0(h.0(h.1(a.))), x1)) Strictly oriented rules of the TRS R: f.0-0(x, f.1-1(y, a.)) -> f.0-1(f.1-0(a., f.0-1(h.0(x), y)), a.) f.1-0(x, f.1-1(y, a.)) -> f.0-1(f.1-0(a., f.0-1(h.1(x), y)), a.) Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = 1 + x_1 + x_2 POL(F.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = 1 + x_1 + x_2 POL(h.0(x_1)) = x_1 POL(h.1(x_1)) = x_1 ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(a., f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.1(a.), x1)) F.1-0(a., f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.1(a.), f.0-1(y_0, a.)) F.0-0(h.1(a.), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.1(a.)), x1)) F.0-0(h.1(a.), f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(y_0, a.)) F.0-0(h.0(h.1(a.)), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.1(a.))), x1)) F.0-0(h.0(h.1(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.1(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(h.1(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.1(z0)))), x1)) F.0-0(h.0(h.0(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.0(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(h.0(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.0(z0)))), x1)) F.0-0(h.0(h.0(x0)), f.0-1(f.1-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.0(x0))), f.1-1(y_1, a.)) F.0-0(h.0(h.1(x0)), f.0-1(f.1-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.1(x0))), f.1-1(y_1, a.)) F.0-0(h.1(a.), f.0-1(f.1-1(y_0, a.), a.)) -> F.0-0(h.0(h.1(a.)), f.1-1(y_0, a.)) F.0-0(h.1(a.), f.0-1(f.0-1(f.0-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.0-1(y_1, a.), a.)) F.0-0(h.1(a.), f.0-1(f.0-1(f.1-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.1-1(y_1, a.), a.)) The TRS R consists of the following rules: f.0-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.0(x), y)), a.) f.1-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.1(x), y)), a.) The set Q consists of the following terms: f.0-0(x0, f.0-1(x1, a.)) f.0-0(x0, f.1-1(x1, a.)) f.1-0(x0, f.0-1(x1, a.)) f.1-0(x0, f.1-1(x1, a.)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: F.1-0(a., f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.1(a.), x1)) F.1-0(a., f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.1(a.), f.0-1(y_0, a.)) F.0-0(h.1(a.), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.1(a.)), x1)) F.0-0(h.1(a.), f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(y_0, a.)) F.0-0(h.0(h.1(a.)), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.1(a.))), x1)) F.0-0(h.0(h.1(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.1(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(h.1(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.1(z0)))), x1)) F.0-0(h.0(h.0(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.0(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(h.0(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.0(z0)))), x1)) F.0-0(h.1(a.), f.0-1(f.0-1(f.0-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.0-1(y_1, a.), a.)) F.0-0(h.1(a.), f.0-1(f.0-1(f.1-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.1-1(y_1, a.), a.)) The TRS R consists of the following rules: f.0-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.0(x), y)), a.) f.1-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.1(x), y)), a.) The set Q consists of the following terms: f.0-0(x0, f.0-1(x1, a.)) f.0-0(x0, f.1-1(x1, a.)) f.1-0(x0, f.0-1(x1, a.)) f.1-0(x0, f.1-1(x1, a.)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: F.1-0(a., f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.1(a.), x1)) F.1-0(a., f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.1(a.), f.0-1(y_0, a.)) F.0-0(h.1(a.), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.1(a.)), x1)) F.0-0(h.1(a.), f.0-1(f.0-1(y_0, a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(y_0, a.)) F.0-0(h.0(h.1(a.)), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.1(a.))), x1)) F.0-0(h.0(h.1(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.1(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(h.1(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.1(z0)))), x1)) F.0-0(h.0(h.0(x0)), f.0-1(f.0-1(y_1, a.), a.)) -> F.0-0(h.0(h.0(h.0(x0))), f.0-1(y_1, a.)) F.0-0(h.0(h.0(h.0(z0))), f.0-1(x1, a.)) -> F.1-0(a., f.0-0(h.0(h.0(h.0(h.0(z0)))), x1)) F.0-0(h.1(a.), f.0-1(f.0-1(f.0-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.0-1(y_1, a.), a.)) F.0-0(h.1(a.), f.0-1(f.0-1(f.1-1(y_1, a.), a.), a.)) -> F.0-0(h.0(h.1(a.)), f.0-1(f.1-1(y_1, a.), a.)) Used ordering: Polynomial interpretation [POLO]: POL(F.0-0(x_1, x_2)) = 1 + x_1 + x_2 POL(F.1-0(x_1, x_2)) = 1 + x_1 + x_2 POL(a.) = 0 POL(f.0-0(x_1, x_2)) = x_1 + x_2 POL(f.0-1(x_1, x_2)) = 1 + x_1 + x_2 POL(f.1-0(x_1, x_2)) = x_1 + x_2 POL(f.1-1(x_1, x_2)) = x_1 + x_2 POL(h.0(x_1)) = x_1 POL(h.1(x_1)) = x_1 ---------------------------------------- (30) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: f.0-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.0(x), y)), a.) f.1-0(x, f.0-1(y, a.)) -> f.0-1(f.1-0(a., f.0-0(h.1(x), y)), a.) The set Q consists of the following terms: f.0-0(x0, f.0-1(x1, a.)) f.0-0(x0, f.1-1(x1, a.)) f.1-0(x0, f.0-1(x1, a.)) f.1-0(x0, f.1-1(x1, a.)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (32) YES