/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. circ : [o * o] --> o cons : [o * o] --> o id : [] --> o lift : [] --> o msubst : [o * o] --> o subst : [o * o] --> o circ(cons(X, Y), Z) => cons(msubst(X, Z), circ(Y, Z)) circ(cons(lift, X), cons(Y, Z)) => cons(Y, circ(X, Z)) circ(cons(lift, X), cons(lift, Y)) => cons(lift, circ(X, Y)) circ(circ(X, Y), Z) => circ(X, circ(Y, Z)) circ(X, id) => X circ(id, X) => X circ(cons(lift, X), circ(cons(lift, Y), Z)) => circ(cons(lift, circ(X, Y)), Z) subst(X, id) => X msubst(X, id) => X msubst(msubst(X, Y), Z) => msubst(X, circ(Y, Z)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] circ#(cons(X, Y), Z) =#> msubst#(X, Z) 1] circ#(cons(X, Y), Z) =#> circ#(Y, Z) 2] circ#(cons(lift, X), cons(Y, Z)) =#> circ#(X, Z) 3] circ#(cons(lift, X), cons(lift, Y)) =#> circ#(X, Y) 4] circ#(circ(X, Y), Z) =#> circ#(X, circ(Y, Z)) 5] circ#(circ(X, Y), Z) =#> circ#(Y, Z) 6] circ#(cons(lift, X), circ(cons(lift, Y), Z)) =#> circ#(cons(lift, circ(X, Y)), Z) 7] circ#(cons(lift, X), circ(cons(lift, Y), Z)) =#> circ#(X, Y) 8] msubst#(msubst(X, Y), Z) =#> msubst#(X, circ(Y, Z)) 9] msubst#(msubst(X, Y), Z) =#> circ#(Y, Z) Rules R_0: circ(cons(X, Y), Z) => cons(msubst(X, Z), circ(Y, Z)) circ(cons(lift, X), cons(Y, Z)) => cons(Y, circ(X, Z)) circ(cons(lift, X), cons(lift, Y)) => cons(lift, circ(X, Y)) circ(circ(X, Y), Z) => circ(X, circ(Y, Z)) circ(X, id) => X circ(id, X) => X circ(cons(lift, X), circ(cons(lift, Y), Z)) => circ(cons(lift, circ(X, Y)), Z) subst(X, id) => X msubst(X, id) => X msubst(msubst(X, Y), Z) => msubst(X, circ(Y, Z)) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor with usable rules [Kop12, Thm. 7.44]. The usable rules of (P_0, R_0) are: circ(cons(X, Y), Z) => cons(msubst(X, Z), circ(Y, Z)) circ(cons(lift, X), cons(Y, Z)) => cons(Y, circ(X, Z)) circ(cons(lift, X), cons(lift, Y)) => cons(lift, circ(X, Y)) circ(circ(X, Y), Z) => circ(X, circ(Y, Z)) circ(X, id) => X circ(id, X) => X circ(cons(lift, X), circ(cons(lift, Y), Z)) => circ(cons(lift, circ(X, Y)), Z) msubst(X, id) => X msubst(msubst(X, Y), Z) => msubst(X, circ(Y, Z)) It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: circ#(cons(X, Y), Z) >? msubst#(X, Z) circ#(cons(X, Y), Z) >? circ#(Y, Z) circ#(cons(lift, X), cons(Y, Z)) >? circ#(X, Z) circ#(cons(lift, X), cons(lift, Y)) >? circ#(X, Y) circ#(circ(X, Y), Z) >? circ#(X, circ(Y, Z)) circ#(circ(X, Y), Z) >? circ#(Y, Z) circ#(cons(lift, X), circ(cons(lift, Y), Z)) >? circ#(cons(lift, circ(X, Y)), Z) circ#(cons(lift, X), circ(cons(lift, Y), Z)) >? circ#(X, Y) msubst#(msubst(X, Y), Z) >? msubst#(X, circ(Y, Z)) msubst#(msubst(X, Y), Z) >? circ#(Y, Z) circ(cons(X, Y), Z) >= cons(msubst(X, Z), circ(Y, Z)) circ(cons(lift, X), cons(Y, Z)) >= cons(Y, circ(X, Z)) circ(cons(lift, X), cons(lift, Y)) >= cons(lift, circ(X, Y)) circ(circ(X, Y), Z) >= circ(X, circ(Y, Z)) circ(X, id) >= X circ(id, X) >= X circ(cons(lift, X), circ(cons(lift, Y), Z)) >= circ(cons(lift, circ(X, Y)), Z) msubst(X, id) >= X msubst(msubst(X, Y), Z) >= msubst(X, circ(Y, Z)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: circ = \y0y1.y1 + 2y0 + 2y0y1 circ# = \y0y1.2y0 + 2y0y1 cons = \y0y1.2 + y1 + 2y0 id = 3 lift = 0 msubst = \y0y1.2y0 + 2y0y1 + 2y1 msubst# = \y0y1.1 + y0 + y0y1 Using this interpretation, the requirements translate to: [[circ#(cons(_x0, _x1), _x2)]] = 4 + 2x1 + 2x1x2 + 4x0 + 4x0x2 + 4x2 > 1 + x0 + x0x2 = [[msubst#(_x0, _x2)]] [[circ#(cons(_x0, _x1), _x2)]] = 4 + 2x1 + 2x1x2 + 4x0 + 4x0x2 + 4x2 > 2x1 + 2x1x2 = [[circ#(_x1, _x2)]] [[circ#(cons(lift, _x0), cons(_x1, _x2))]] = 12 + 2x0x2 + 4x0x1 + 4x2 + 6x0 + 8x1 > 2x0 + 2x0x2 = [[circ#(_x0, _x2)]] [[circ#(cons(lift, _x0), cons(lift, _x1))]] = 12 + 2x0x1 + 4x1 + 6x0 > 2x0 + 2x0x1 = [[circ#(_x0, _x1)]] [[circ#(circ(_x0, _x1), _x2)]] = 2x1 + 2x1x2 + 4x0 + 4x0x1 + 4x0x1x2 + 4x0x2 >= 2x0 + 2x0x2 + 4x0x1 + 4x0x1x2 = [[circ#(_x0, circ(_x1, _x2))]] [[circ#(circ(_x0, _x1), _x2)]] = 2x1 + 2x1x2 + 4x0 + 4x0x1 + 4x0x1x2 + 4x0x2 >= 2x1 + 2x1x2 = [[circ#(_x1, _x2)]] [[circ#(cons(lift, _x0), circ(cons(lift, _x1), _x2))]] = 20 + 4x0x1 + 4x0x1x2 + 8x1 + 8x1x2 + 10x0 + 10x0x2 + 20x2 > 4 + 2x1 + 2x1x2 + 4x0 + 4x0x1 + 4x0x1x2 + 4x0x2 + 4x2 = [[circ#(cons(lift, circ(_x0, _x1)), _x2)]] [[circ#(cons(lift, _x0), circ(cons(lift, _x1), _x2))]] = 20 + 4x0x1 + 4x0x1x2 + 8x1 + 8x1x2 + 10x0 + 10x0x2 + 20x2 > 2x0 + 2x0x1 = [[circ#(_x0, _x1)]] [[msubst#(msubst(_x0, _x1), _x2)]] = 1 + 2x0 + 2x0x1 + 2x0x1x2 + 2x0x2 + 2x1 + 2x1x2 >= 1 + x0 + 2x0x1 + 2x0x1x2 + x0x2 = [[msubst#(_x0, circ(_x1, _x2))]] [[msubst#(msubst(_x0, _x1), _x2)]] = 1 + 2x0 + 2x0x1 + 2x0x1x2 + 2x0x2 + 2x1 + 2x1x2 > 2x1 + 2x1x2 = [[circ#(_x1, _x2)]] [[circ(cons(_x0, _x1), _x2)]] = 4 + 2x1 + 2x1x2 + 4x0 + 4x0x2 + 5x2 >= 2 + 2x1 + 2x1x2 + 4x0 + 4x0x2 + 5x2 = [[cons(msubst(_x0, _x2), circ(_x1, _x2))]] [[circ(cons(lift, _x0), cons(_x1, _x2))]] = 14 + 2x0x2 + 4x0x1 + 5x2 + 6x0 + 10x1 >= 2 + x2 + 2x0 + 2x0x2 + 2x1 = [[cons(_x1, circ(_x0, _x2))]] [[circ(cons(lift, _x0), cons(lift, _x1))]] = 14 + 2x0x1 + 5x1 + 6x0 >= 2 + x1 + 2x0 + 2x0x1 = [[cons(lift, circ(_x0, _x1))]] [[circ(circ(_x0, _x1), _x2)]] = x2 + 2x1 + 2x1x2 + 4x0 + 4x0x1 + 4x0x1x2 + 4x0x2 >= x2 + 2x0 + 2x0x2 + 2x1 + 2x1x2 + 4x0x1 + 4x0x1x2 = [[circ(_x0, circ(_x1, _x2))]] [[circ(_x0, id)]] = 3 + 8x0 >= x0 = [[_x0]] [[circ(id, _x0)]] = 6 + 7x0 >= x0 = [[_x0]] [[circ(cons(lift, _x0), circ(cons(lift, _x1), _x2))]] = 24 + 4x0x1 + 4x0x1x2 + 10x0 + 10x0x2 + 10x1 + 10x1x2 + 25x2 >= 4 + 2x1 + 2x1x2 + 4x0 + 4x0x1 + 4x0x1x2 + 4x0x2 + 5x2 = [[circ(cons(lift, circ(_x0, _x1)), _x2)]] [[msubst(_x0, id)]] = 6 + 8x0 >= x0 = [[_x0]] [[msubst(msubst(_x0, _x1), _x2)]] = 2x2 + 4x0 + 4x0x1 + 4x0x1x2 + 4x0x2 + 4x1 + 4x1x2 >= 2x0 + 2x0x2 + 2x2 + 4x0x1 + 4x0x1x2 + 4x1 + 4x1x2 = [[msubst(_x0, circ(_x1, _x2))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_1, R_0, minimal, formative), where P_1 consists of: circ#(circ(X, Y), Z) =#> circ#(X, circ(Y, Z)) circ#(circ(X, Y), Z) =#> circ#(Y, Z) msubst#(msubst(X, Y), Z) =#> msubst#(X, circ(Y, Z)) Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1 * 1 : 0, 1 * 2 : 2 This graph has the following strongly connected components: P_2: circ#(circ(X, Y), Z) =#> circ#(X, circ(Y, Z)) circ#(circ(X, Y), Z) =#> circ#(Y, Z) P_3: msubst#(msubst(X, Y), Z) =#> msubst#(X, circ(Y, Z)) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_1, R_0, m, f) by (P_2, R_0, m, f) and (P_3, R_0, m, f). Thus, the original system is terminating if each of (P_2, R_0, minimal, formative) and (P_3, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_3, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(msubst#) = 1 Thus, we can orient the dependency pairs as follows: nu(msubst#(msubst(X, Y), Z)) = msubst(X, Y) |> X = nu(msubst#(X, circ(Y, Z))) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_3, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. Thus, the original system is terminating if (P_2, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_2, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(circ#) = 1 Thus, we can orient the dependency pairs as follows: nu(circ#(circ(X, Y), Z)) = circ(X, Y) |> X = nu(circ#(X, circ(Y, Z))) nu(circ#(circ(X, Y), Z)) = circ(X, Y) |> Y = nu(circ#(Y, Z)) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_2, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.