/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. 0 : [] --> o a!6220!6220adx : [o] --> o a!6220!6220hd : [o] --> o a!6220!6220incr : [o] --> o a!6220!6220nats : [] --> o a!6220!6220tl : [o] --> o a!6220!6220zeros : [] --> o adx : [o] --> o cons : [o * o] --> o hd : [o] --> o incr : [o] --> o mark : [o] --> o nats : [] --> o s : [o] --> o tl : [o] --> o zeros : [] --> o a!6220!6220nats => a!6220!6220adx(a!6220!6220zeros) a!6220!6220zeros => cons(0, zeros) a!6220!6220incr(cons(X, Y)) => cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) => a!6220!6220incr(cons(X, adx(Y))) a!6220!6220hd(cons(X, Y)) => mark(X) a!6220!6220tl(cons(X, Y)) => mark(Y) mark(nats) => a!6220!6220nats mark(adx(X)) => a!6220!6220adx(mark(X)) mark(zeros) => a!6220!6220zeros mark(incr(X)) => a!6220!6220incr(mark(X)) mark(hd(X)) => a!6220!6220hd(mark(X)) mark(tl(X)) => a!6220!6220tl(mark(X)) mark(cons(X, Y)) => cons(X, Y) mark(0) => 0 mark(s(X)) => s(X) a!6220!6220nats => nats a!6220!6220adx(X) => adx(X) a!6220!6220zeros => zeros a!6220!6220incr(X) => incr(X) a!6220!6220hd(X) => hd(X) a!6220!6220tl(X) => tl(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220nats >? a!6220!6220adx(a!6220!6220zeros) a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) a!6220!6220hd(cons(X, Y)) >? mark(X) a!6220!6220tl(cons(X, Y)) >? mark(Y) mark(nats) >? a!6220!6220nats mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(zeros) >? a!6220!6220zeros mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(hd(X)) >? a!6220!6220hd(mark(X)) mark(tl(X)) >? a!6220!6220tl(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220nats >? nats a!6220!6220adx(X) >? adx(X) a!6220!6220zeros >? zeros a!6220!6220incr(X) >? incr(X) a!6220!6220hd(X) >? hd(X) a!6220!6220tl(X) >? tl(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220hd = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 2 a!6220!6220tl = \y0.y0 a!6220!6220zeros = 0 adx = \y0.y0 cons = \y0y1.y1 + 2y0 hd = \y0.y0 incr = \y0.y0 mark = \y0.y0 nats = 2 s = \y0.y0 tl = \y0.y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220nats]] = 2 > 0 = [[a!6220!6220adx(a!6220!6220zeros)]] [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[a!6220!6220hd(cons(_x0, _x1))]] = x1 + 2x0 >= x0 = [[mark(_x0)]] [[a!6220!6220tl(cons(_x0, _x1))]] = x1 + 2x0 >= x1 = [[mark(_x1)]] [[mark(nats)]] = 2 >= 2 = [[a!6220!6220nats]] [[mark(adx(_x0))]] = x0 >= x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(hd(_x0))]] = x0 >= x0 = [[a!6220!6220hd(mark(_x0))]] [[mark(tl(_x0))]] = x0 >= x0 = [[a!6220!6220tl(mark(_x0))]] [[mark(cons(_x0, _x1))]] = x1 + 2x0 >= x1 + 2x0 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = x0 >= x0 = [[s(_x0)]] [[a!6220!6220nats]] = 2 >= 2 = [[nats]] [[a!6220!6220adx(_x0)]] = x0 >= x0 = [[adx(_x0)]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220hd(_x0)]] = x0 >= x0 = [[hd(_x0)]] [[a!6220!6220tl(_x0)]] = x0 >= x0 = [[tl(_x0)]] We can thus remove the following rules: a!6220!6220nats => a!6220!6220adx(a!6220!6220zeros) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) a!6220!6220hd(cons(X, Y)) >? mark(X) a!6220!6220tl(cons(X, Y)) >? mark(Y) mark(nats) >? a!6220!6220nats mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(zeros) >? a!6220!6220zeros mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(hd(X)) >? a!6220!6220hd(mark(X)) mark(tl(X)) >? a!6220!6220tl(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220nats >? nats a!6220!6220adx(X) >? adx(X) a!6220!6220zeros >? zeros a!6220!6220incr(X) >? incr(X) a!6220!6220hd(X) >? hd(X) a!6220!6220tl(X) >? tl(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220hd = \y0.2 + y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220tl = \y0.2 + y0 a!6220!6220zeros = 0 adx = \y0.y0 cons = \y0y1.2y0 + 2y1 hd = \y0.1 + y0 incr = \y0.y0 mark = \y0.2y0 nats = 0 s = \y0.y0 tl = \y0.1 + y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[a!6220!6220hd(cons(_x0, _x1))]] = 2 + 2x0 + 2x1 > 2x0 = [[mark(_x0)]] [[a!6220!6220tl(cons(_x0, _x1))]] = 2 + 2x0 + 2x1 > 2x1 = [[mark(_x1)]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(adx(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(hd(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[a!6220!6220hd(mark(_x0))]] [[mark(tl(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[a!6220!6220tl(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 4x0 + 4x1 >= 2x0 + 2x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= x0 = [[s(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220adx(_x0)]] = x0 >= x0 = [[adx(_x0)]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] [[a!6220!6220hd(_x0)]] = 2 + x0 > 1 + x0 = [[hd(_x0)]] [[a!6220!6220tl(_x0)]] = 2 + x0 > 1 + x0 = [[tl(_x0)]] We can thus remove the following rules: a!6220!6220hd(cons(X, Y)) => mark(X) a!6220!6220tl(cons(X, Y)) => mark(Y) a!6220!6220hd(X) => hd(X) a!6220!6220tl(X) => tl(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(nats) >? a!6220!6220nats mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(zeros) >? a!6220!6220zeros mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(hd(X)) >? a!6220!6220hd(mark(X)) mark(tl(X)) >? a!6220!6220tl(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220nats >? nats a!6220!6220adx(X) >? adx(X) a!6220!6220zeros >? zeros a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220hd = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220tl = \y0.y0 a!6220!6220zeros = 0 adx = \y0.y0 cons = \y0y1.y0 + y1 hd = \y0.3 + 3y0 incr = \y0.y0 mark = \y0.2y0 nats = 0 s = \y0.y0 tl = \y0.3 + 3y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(adx(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(hd(_x0))]] = 6 + 6x0 > 2x0 = [[a!6220!6220hd(mark(_x0))]] [[mark(tl(_x0))]] = 6 + 6x0 > 2x0 = [[a!6220!6220tl(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= x0 = [[s(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220adx(_x0)]] = x0 >= x0 = [[adx(_x0)]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: mark(hd(X)) => a!6220!6220hd(mark(X)) mark(tl(X)) => a!6220!6220tl(mark(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(nats) >? a!6220!6220nats mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(zeros) >? a!6220!6220zeros mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220nats >? nats a!6220!6220adx(X) >? adx(X) a!6220!6220zeros >? zeros a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.2 + y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220zeros = 0 adx = \y0.1 + y0 cons = \y0y1.y0 + 2y1 incr = \y0.y0 mark = \y0.2y0 nats = 0 s = \y0.y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2 + x0 + 2x1 >= 2 + x0 + 2x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(adx(_x0))]] = 2 + 2x0 >= 2 + 2x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x0 + 4x1 >= x0 + 2x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= x0 = [[s(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220adx(_x0)]] = 2 + x0 > 1 + x0 = [[adx(_x0)]] [[a!6220!6220zeros]] = 0 >= 0 = [[zeros]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: a!6220!6220adx(X) => adx(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(nats) >? a!6220!6220nats mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(zeros) >? a!6220!6220zeros mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220nats >? nats a!6220!6220zeros >? zeros a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.2y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220zeros = 2 adx = \y0.2y0 cons = \y0y1.y0 + 2y1 incr = \y0.y0 mark = \y0.2y0 nats = 0 s = \y0.y0 zeros = 1 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 2 >= 2 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2x0 + 4x1 >= x0 + 4x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(nats)]] = 0 >= 0 = [[a!6220!6220nats]] [[mark(adx(_x0))]] = 4x0 >= 4x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 2 >= 2 = [[a!6220!6220zeros]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x0 + 4x1 >= x0 + 2x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= x0 = [[s(_x0)]] [[a!6220!6220nats]] = 0 >= 0 = [[nats]] [[a!6220!6220zeros]] = 2 > 1 = [[zeros]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: a!6220!6220zeros => zeros We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(nats) >? a!6220!6220nats mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(zeros) >? a!6220!6220zeros mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220nats >? nats a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 2 a!6220!6220zeros = 0 adx = \y0.y0 cons = \y0y1.y0 + y1 incr = \y0.y0 mark = \y0.2y0 nats = 1 s = \y0.y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(nats)]] = 2 >= 2 = [[a!6220!6220nats]] [[mark(adx(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= x0 = [[s(_x0)]] [[a!6220!6220nats]] = 2 > 1 = [[nats]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: a!6220!6220nats => nats We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(nats) >? a!6220!6220nats mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(zeros) >? a!6220!6220zeros mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220nats = 0 a!6220!6220zeros = 0 adx = \y0.y0 cons = \y0y1.y0 + y1 incr = \y0.y0 mark = \y0.2y0 nats = 3 s = \y0.y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 0 >= 0 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(nats)]] = 6 > 0 = [[a!6220!6220nats]] [[mark(adx(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 0 >= 0 = [[a!6220!6220zeros]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2x0 + 2x1 >= x0 + x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= x0 = [[s(_x0)]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: mark(nats) => a!6220!6220nats We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(zeros) >? a!6220!6220zeros mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220zeros = 2 adx = \y0.y0 cons = \y0y1.y0 + 2y1 incr = \y0.y0 mark = \y0.3y0 s = \y0.y0 zeros = 1 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 2 >= 2 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = x0 + 2x1 >= x0 + 2x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(adx(_x0))]] = 3x0 >= 3x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(zeros)]] = 3 > 2 = [[a!6220!6220zeros]] [[mark(incr(_x0))]] = 3x0 >= 3x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 3x0 + 6x1 >= x0 + 2x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 3x0 >= x0 = [[s(_x0)]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: mark(zeros) => a!6220!6220zeros We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220zeros >? cons(0, zeros) a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220incr = \y0.y0 a!6220!6220zeros = 3 adx = \y0.y0 cons = \y0y1.2y0 + 2y1 incr = \y0.y0 mark = \y0.2y0 s = \y0.y0 zeros = 0 Using this interpretation, the requirements translate to: [[a!6220!6220zeros]] = 3 > 0 = [[cons(0, zeros)]] [[a!6220!6220incr(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2x0 + 2x1 >= 2x0 + 2x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(adx(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 4x0 + 4x1 >= 2x0 + 2x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 0 >= 0 = [[0]] [[mark(s(_x0))]] = 2x0 >= x0 = [[s(_x0)]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: a!6220!6220zeros => cons(0, zeros) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(incr(X)) >? a!6220!6220incr(mark(X)) mark(cons(X, Y)) >? cons(X, Y) mark(0) >? 0 mark(s(X)) >? s(X) a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: 0 = 0 a!6220!6220adx = \y0.y0 a!6220!6220incr = \y0.y0 adx = \y0.y0 cons = \y0y1.y0 + y1 incr = \y0.y0 mark = \y0.2 + y0 s = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(adx(_x0))]] = 2 + x0 >= 2 + x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(incr(_x0))]] = 2 + x0 >= 2 + x0 = [[a!6220!6220incr(mark(_x0))]] [[mark(cons(_x0, _x1))]] = 2 + x0 + x1 > x0 + x1 = [[cons(_x0, _x1)]] [[mark(0)]] = 2 > 0 = [[0]] [[mark(s(_x0))]] = 2 + x0 > x0 = [[s(_x0)]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: mark(cons(X, Y)) => cons(X, Y) mark(0) => 0 mark(s(X)) => s(X) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) a!6220!6220adx(cons(X, Y)) >? a!6220!6220incr(cons(X, adx(Y))) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(incr(X)) >? a!6220!6220incr(mark(X)) a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: a!6220!6220adx = \y0.2y0 a!6220!6220incr = \y0.y0 adx = \y0.2y0 cons = \y0y1.1 + y0 + 2y1 incr = \y0.y0 mark = \y0.y0 s = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(cons(_x0, _x1))]] = 1 + x0 + 2x1 >= 1 + x0 + 2x1 = [[cons(s(_x0), incr(_x1))]] [[a!6220!6220adx(cons(_x0, _x1))]] = 2 + 2x0 + 4x1 > 1 + x0 + 4x1 = [[a!6220!6220incr(cons(_x0, adx(_x1)))]] [[mark(adx(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: a!6220!6220adx(cons(X, Y)) => a!6220!6220incr(cons(X, adx(Y))) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) mark(adx(X)) >? a!6220!6220adx(mark(X)) mark(incr(X)) >? a!6220!6220incr(mark(X)) a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: a!6220!6220adx = \y0.y0 a!6220!6220incr = \y0.y0 adx = \y0.3 + 3y0 cons = \y0y1.y0 + y1 incr = \y0.y0 mark = \y0.y0 s = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(cons(_x0, _x1))]] = x0 + x1 >= x0 + x1 = [[cons(s(_x0), incr(_x1))]] [[mark(adx(_x0))]] = 3 + 3x0 > x0 = [[a!6220!6220adx(mark(_x0))]] [[mark(incr(_x0))]] = x0 >= x0 = [[a!6220!6220incr(mark(_x0))]] [[a!6220!6220incr(_x0)]] = x0 >= x0 = [[incr(_x0)]] We can thus remove the following rules: mark(adx(X)) => a!6220!6220adx(mark(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(cons(X, Y)) >? cons(s(X), incr(Y)) mark(incr(X)) >? a!6220!6220incr(mark(X)) a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: a!6220!6220incr = \y0.2y0 cons = \y0y1.2 + y1 + 2y0 incr = \y0.2y0 mark = \y0.y0 s = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(cons(_x0, _x1))]] = 4 + 2x1 + 4x0 > 2 + 2x0 + 2x1 = [[cons(s(_x0), incr(_x1))]] [[mark(incr(_x0))]] = 2x0 >= 2x0 = [[a!6220!6220incr(mark(_x0))]] [[a!6220!6220incr(_x0)]] = 2x0 >= 2x0 = [[incr(_x0)]] We can thus remove the following rules: a!6220!6220incr(cons(X, Y)) => cons(s(X), incr(Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): mark(incr(X)) >? a!6220!6220incr(mark(X)) a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: a!6220!6220incr = \y0.1 + y0 incr = \y0.1 + y0 mark = \y0.2y0 Using this interpretation, the requirements translate to: [[mark(incr(_x0))]] = 2 + 2x0 > 1 + 2x0 = [[a!6220!6220incr(mark(_x0))]] [[a!6220!6220incr(_x0)]] = 1 + x0 >= 1 + x0 = [[incr(_x0)]] We can thus remove the following rules: mark(incr(X)) => a!6220!6220incr(mark(X)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): a!6220!6220incr(X) >? incr(X) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: a!6220!6220incr = \y0.3 + 3y0 incr = \y0.y0 Using this interpretation, the requirements translate to: [[a!6220!6220incr(_x0)]] = 3 + 3x0 > x0 = [[incr(_x0)]] We can thus remove the following rules: a!6220!6220incr(X) => incr(X) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.