/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (20) QDP (21) PisEmptyProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) UsableRulesProof [EQUIVALENT, 0 ms] (25) QDP (26) QReductionProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QReductionProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPSizeChangeProof [EQUIVALENT, 0 ms] (36) YES (37) QDP (38) UsableRulesProof [EQUIVALENT, 0 ms] (39) QDP (40) QReductionProof [EQUIVALENT, 0 ms] (41) QDP (42) MRRProof [EQUIVALENT, 2 ms] (43) QDP (44) PisEmptyProof [EQUIVALENT, 0 ms] (45) YES (46) QDP (47) UsableRulesProof [EQUIVALENT, 0 ms] (48) QDP (49) QReductionProof [EQUIVALENT, 0 ms] (50) QDP (51) QDPSizeChangeProof [EQUIVALENT, 0 ms] (52) YES (53) QDP (54) UsableRulesProof [EQUIVALENT, 0 ms] (55) QDP (56) QReductionProof [EQUIVALENT, 0 ms] (57) QDP (58) QDPOrderProof [EQUIVALENT, 0 ms] (59) QDP (60) PisEmptyProof [EQUIVALENT, 0 ms] (61) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) The TRS R 2 is less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The signature Sigma is {less_leaves_2, false, true} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) QUOT(s(x), s(y)) -> MINUS(x, y) APP(add(n, x), y) -> APP(x, y) REVERSE(add(n, x)) -> APP(reverse(x), add(n, nil)) REVERSE(add(n, x)) -> REVERSE(x) SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x)) SHUFFLE(add(n, x)) -> REVERSE(x) CONCAT(cons(u, v), y) -> CONCAT(v, y) LESS_LEAVES(cons(u, v), cons(w, z)) -> LESS_LEAVES(concat(u, v), concat(w, z)) LESS_LEAVES(cons(u, v), cons(w, z)) -> CONCAT(u, v) LESS_LEAVES(cons(u, v), cons(w, z)) -> CONCAT(w, z) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: CONCAT(cons(u, v), y) -> CONCAT(v, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: CONCAT(cons(u, v), y) -> CONCAT(v, y) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: CONCAT(cons(u, v), y) -> CONCAT(v, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONCAT(cons(u, v), y) -> CONCAT(v, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LESS_LEAVES(cons(u, v), cons(w, z)) -> LESS_LEAVES(concat(u, v), concat(w, z)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LESS_LEAVES(cons(u, v), cons(w, z)) -> LESS_LEAVES(concat(u, v), concat(w, z)) The TRS R consists of the following rules: concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LESS_LEAVES(cons(u, v), cons(w, z)) -> LESS_LEAVES(concat(u, v), concat(w, z)) The TRS R consists of the following rules: concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) The set Q consists of the following terms: concat(leaf, x0) concat(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: LESS_LEAVES(cons(u, v), cons(w, z)) -> LESS_LEAVES(concat(u, v), concat(w, z)) The following rules are removed from R: concat(leaf, y) -> y Used ordering: POLO with Polynomial interpretation [POLO]: POL(LESS_LEAVES(x_1, x_2)) = x_1 + x_2 POL(concat(x_1, x_2)) = x_1 + x_2 POL(cons(x_1, x_2)) = 1 + 2*x_1 + x_2 POL(leaf) = 0 ---------------------------------------- (20) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: concat(cons(u, v), y) -> cons(u, concat(v, y)) The set Q consists of the following terms: concat(leaf, x0) concat(cons(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(add(n, x), y) -> APP(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: REVERSE(add(n, x)) -> REVERSE(x) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: REVERSE(add(n, x)) -> REVERSE(x) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: REVERSE(add(n, x)) -> REVERSE(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *REVERSE(add(n, x)) -> REVERSE(x) The graph contains the following edges 1 > 1 ---------------------------------------- (36) YES ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x)) The TRS R consists of the following rules: reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x)) The TRS R consists of the following rules: reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) The set Q consists of the following terms: app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x)) Used ordering: Polynomial interpretation [POLO]: POL(SHUFFLE(x_1)) = x_1 POL(add(x_1, x_2)) = 2 + 2*x_1 + x_2 POL(app(x_1, x_2)) = x_1 + x_2 POL(nil) = 0 POL(reverse(x_1)) = x_1 ---------------------------------------- (43) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) The set Q consists of the following terms: app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (45) YES ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (52) YES ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(nil) -> nil shuffle(add(n, x)) -> add(n, shuffle(reverse(x))) concat(leaf, y) -> y concat(cons(u, v), y) -> cons(u, concat(v, y)) less_leaves(x, leaf) -> false less_leaves(leaf, cons(w, z)) -> true less_leaves(cons(u, v), cons(w, z)) -> less_leaves(concat(u, v), concat(w, z)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(nil) shuffle(add(x0, x1)) concat(leaf, x0) concat(cons(x0, x1), x2) less_leaves(x0, leaf) less_leaves(leaf, cons(x0, x1)) less_leaves(cons(x0, x1), cons(x2, x3)) ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. QUOT(x1, x2) = x1 s(x1) = s(x1) minus(x1, x2) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 dummyConstant=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) ---------------------------------------- (59) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (61) YES