/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) QDPOrderProof [EQUIVALENT, 75 ms] (17) QDP (18) DependencyGraphProof [EQUIVALENT, 0 ms] (19) QDP (20) QDPSizeChangeProof [EQUIVALENT, 0 ms] (21) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus_active(0, y) -> 0 mark(0) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0) -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0, s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0, s(y)) -> 0 mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS_ACTIVE(s(x), s(y)) -> MINUS_ACTIVE(x, y) MARK(s(x)) -> MARK(x) MARK(minus(x, y)) -> MINUS_ACTIVE(x, y) MARK(ge(x, y)) -> GE_ACTIVE(x, y) GE_ACTIVE(s(x), s(y)) -> GE_ACTIVE(x, y) MARK(div(x, y)) -> DIV_ACTIVE(mark(x), y) MARK(div(x, y)) -> MARK(x) MARK(if(x, y, z)) -> IF_ACTIVE(mark(x), y, z) MARK(if(x, y, z)) -> MARK(x) DIV_ACTIVE(s(x), s(y)) -> IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0) DIV_ACTIVE(s(x), s(y)) -> GE_ACTIVE(x, y) IF_ACTIVE(true, x, y) -> MARK(x) IF_ACTIVE(false, x, y) -> MARK(y) The TRS R consists of the following rules: minus_active(0, y) -> 0 mark(0) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0) -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0, s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0, s(y)) -> 0 mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: GE_ACTIVE(s(x), s(y)) -> GE_ACTIVE(x, y) The TRS R consists of the following rules: minus_active(0, y) -> 0 mark(0) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0) -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0, s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0, s(y)) -> 0 mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GE_ACTIVE(s(x), s(y)) -> GE_ACTIVE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE_ACTIVE(s(x), s(y)) -> GE_ACTIVE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS_ACTIVE(s(x), s(y)) -> MINUS_ACTIVE(x, y) The TRS R consists of the following rules: minus_active(0, y) -> 0 mark(0) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0) -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0, s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0, s(y)) -> 0 mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS_ACTIVE(s(x), s(y)) -> MINUS_ACTIVE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS_ACTIVE(s(x), s(y)) -> MINUS_ACTIVE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(div(x, y)) -> DIV_ACTIVE(mark(x), y) DIV_ACTIVE(s(x), s(y)) -> IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0) IF_ACTIVE(true, x, y) -> MARK(x) MARK(s(x)) -> MARK(x) MARK(div(x, y)) -> MARK(x) MARK(if(x, y, z)) -> IF_ACTIVE(mark(x), y, z) IF_ACTIVE(false, x, y) -> MARK(y) MARK(if(x, y, z)) -> MARK(x) The TRS R consists of the following rules: minus_active(0, y) -> 0 mark(0) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0) -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0, s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0, s(y)) -> 0 mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(div(x, y)) -> DIV_ACTIVE(mark(x), y) MARK(s(x)) -> MARK(x) MARK(div(x, y)) -> MARK(x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( DIV_ACTIVE_2(x_1, x_2) ) = 2x_1 + 1 POL( IF_ACTIVE_3(x_1, ..., x_3) ) = x_2 + 2x_3 POL( mark_1(x_1) ) = x_1 POL( 0 ) = 0 POL( s_1(x_1) ) = x_1 + 1 POL( minus_2(x_1, x_2) ) = 0 POL( minus_active_2(x_1, x_2) ) = 0 POL( ge_2(x_1, x_2) ) = 0 POL( ge_active_2(x_1, x_2) ) = 0 POL( div_2(x_1, x_2) ) = 2x_1 + 2 POL( div_active_2(x_1, x_2) ) = 2x_1 + 2 POL( if_active_3(x_1, ..., x_3) ) = x_1 + x_2 + 2x_3 POL( true ) = 0 POL( if_3(x_1, ..., x_3) ) = x_1 + x_2 + 2x_3 POL( false ) = 0 POL( MARK_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: mark(0) -> 0 mark(s(x)) -> s(mark(x)) mark(minus(x, y)) -> minus_active(x, y) mark(ge(x, y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) mark(if(x, y, z)) -> if_active(mark(x), y, z) if_active(false, x, y) -> mark(y) ge_active(x, 0) -> true ge_active(0, s(y)) -> false ge_active(s(x), s(y)) -> ge_active(x, y) ge_active(x, y) -> ge(x, y) div_active(0, s(y)) -> 0 div_active(x, y) -> div(x, y) if_active(x, y, z) -> if(x, y, z) minus_active(0, y) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) minus_active(x, y) -> minus(x, y) ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: DIV_ACTIVE(s(x), s(y)) -> IF_ACTIVE(ge_active(x, y), s(div(minus(x, y), s(y))), 0) IF_ACTIVE(true, x, y) -> MARK(x) MARK(if(x, y, z)) -> IF_ACTIVE(mark(x), y, z) IF_ACTIVE(false, x, y) -> MARK(y) MARK(if(x, y, z)) -> MARK(x) The TRS R consists of the following rules: minus_active(0, y) -> 0 mark(0) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0) -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0, s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0, s(y)) -> 0 mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(if(x, y, z)) -> IF_ACTIVE(mark(x), y, z) IF_ACTIVE(true, x, y) -> MARK(x) MARK(if(x, y, z)) -> MARK(x) IF_ACTIVE(false, x, y) -> MARK(y) The TRS R consists of the following rules: minus_active(0, y) -> 0 mark(0) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0) -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0, s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0, s(y)) -> 0 mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(if(x, y, z)) -> MARK(x) The graph contains the following edges 1 > 1 *MARK(if(x, y, z)) -> IF_ACTIVE(mark(x), y, z) The graph contains the following edges 1 > 2, 1 > 3 *IF_ACTIVE(true, x, y) -> MARK(x) The graph contains the following edges 2 >= 1 *IF_ACTIVE(false, x, y) -> MARK(y) The graph contains the following edges 3 >= 1 ---------------------------------------- (21) YES