/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPOrderProof [EQUIVALENT, 16 ms] (20) QDP (21) PisEmptyProof [EQUIVALENT, 0 ms] (22) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x The TRS R 2 is cond(true, x) -> cond(odd(x), p(p(p(x)))) The signature Sigma is {cond_2} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0) odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x) -> COND(odd(x), p(p(p(x)))) COND(true, x) -> ODD(x) COND(true, x) -> P(p(p(x))) COND(true, x) -> P(p(x)) COND(true, x) -> P(x) ODD(s(s(x))) -> ODD(x) The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0) odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: ODD(s(s(x))) -> ODD(x) The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0) odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: ODD(s(s(x))) -> ODD(x) R is empty. The set Q consists of the following terms: cond(true, x0) odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond(true, x0) odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: ODD(s(s(x))) -> ODD(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ODD(s(s(x))) -> ODD(x) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x) -> COND(odd(x), p(p(p(x)))) The TRS R consists of the following rules: cond(true, x) -> cond(odd(x), p(p(p(x)))) odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0) odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x) -> COND(odd(x), p(p(p(x)))) The TRS R consists of the following rules: odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: cond(true, x0) odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. cond(true, x0) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: COND(true, x) -> COND(odd(x), p(p(p(x)))) The TRS R consists of the following rules: odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. COND(true, x) -> COND(odd(x), p(p(p(x)))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(COND(x_1, x_2)) = [1/4]x_1 + [1/4]x_2 POL(false) = 0 POL(odd(x_1)) = [1/4]x_1 POL(p(x_1)) = [1/4]x_1 POL(s(x_1)) = [1] + [4]x_1 POL(true) = [1/4] The value of delta used in the strict ordering is 1/16. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x ---------------------------------------- (20) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) p(0) -> 0 p(s(x)) -> x The set Q consists of the following terms: odd(0) odd(s(0)) odd(s(s(x0))) p(0) p(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (22) YES