/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 8 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) MNOCProof [EQUIVALENT, 0 ms] (30) QDP (31) NonLoopProof [COMPLETE, 7015 ms] (32) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), double(x), s(y)) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) The TRS R 2 is f(true, x, y) -> f(gt(x, y), double(x), s(y)) The signature Sigma is {f_3} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), double(x), s(y)) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, x, y) -> F(gt(x, y), double(x), s(y)) F(true, x, y) -> GT(x, y) F(true, x, y) -> DOUBLE(x) GT(s(x), s(y)) -> GT(x, y) DOUBLE(x) -> TIMES(x, s(s(0))) TIMES(s(x), y) -> PLUS(y, times(x, y)) TIMES(s(x), y) -> TIMES(x, y) PLUS(s(x), y) -> PLUS(x, s(y)) The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), double(x), s(y)) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, s(y)) The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), double(x), s(y)) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, s(y)) R is empty. The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, s(y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, s(y)) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), double(x), s(y)) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) R is empty. The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TIMES(s(x), y) -> TIMES(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), double(x), s(y)) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: GT(s(x), s(y)) -> GT(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GT(s(x), s(y)) -> GT(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, x, y) -> F(gt(x, y), double(x), s(y)) The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), double(x), s(y)) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) The set Q consists of the following terms: f(true, x0, x1) gt(s(x0), 0) gt(0, x0) gt(s(x0), s(x1)) double(x0) times(0, x0) times(s(x0), x1) plus(0, x0) plus(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: F(true, x, y) -> F(gt(x, y), double(x), s(y)) The TRS R consists of the following rules: f(true, x, y) -> f(gt(x, y), double(x), s(y)) gt(s(x), 0) -> true gt(0, y) -> false gt(s(x), s(y)) -> gt(x, y) double(x) -> times(x, s(s(0))) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, y) -> y plus(s(x), y) -> plus(x, s(y)) Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (31) NonLoopProof (COMPLETE) By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP. We apply the theorem with m = 1, b = 1, σ' = [zr3 / s(zr3)], and μ' = [zr3 / times(s(zr3), s(s(0)))] on the rule F(true, s(s(s(zr3))), s(zr2))[zr3 / s(zr3), zr2 / s(zr2)]^n[zr2 / 0] -> F(true, s(s(s(s(zr3)))), s(s(zr2)))[zr2 / s(zr2), zr3 / s(s(zr3))]^n[zr2 / 0, zr3 / times(s(zr3), s(s(0)))] This rule is correct for the QDP as the following derivation shows: F(true, s(s(s(zr3))), s(zr2))[zr3 / s(zr3), zr2 / s(zr2)]^n[zr2 / 0] -> F(true, s(s(s(s(zr3)))), s(s(zr2)))[zr2 / s(zr2), zr3 / s(s(zr3))]^n[zr2 / 0, zr3 / times(s(zr3), s(s(0)))] by Equivalence by Irrelevant Pattern Substitutions sigma: [zr2 / s(zr2), zr3 / s(s(zr3))] mu: [zr2 / 0, zr3 / times(s(zr3), s(s(0)))] intermediate steps: Equiv IPS (lhs) - Instantiate mu - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv Smu (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) F(true, s(s(zl2)), s(zl3))[zl2 / s(zl2), zl3 / s(zl3)]^n[zl2 / y1, zl3 / 0] -> F(true, s(s(s(s(zt1)))), s(s(zr3)))[zr3 / s(zr3), zt1 / s(s(zt1))]^n[zr3 / 0, zt1 / times(y1, s(s(0)))] by Rewrite sigma at the term of variable: zt1 with the rewrite sequence : [([],plus(s(x), y) -> plus(x, s(y))), ([],plus(s(x), y) -> plus(x, s(y))), ([],plus(0, y) -> y)] F(true, s(s(zl2)), s(zl3))[zl2 / s(zl2), zl3 / s(zl3)]^n[zl2 / y1, zl3 / 0] -> F(true, s(s(s(s(zt1)))), s(s(zr3)))[zr3 / s(zr3), zt1 / plus(s(s(0)), zt1)]^n[zr3 / 0, zt1 / times(y1, s(s(0)))] by Rewrite t with the rewrite sequence : [([1],plus(s(x), y) -> plus(x, s(y))), ([1],plus(s(x), y) -> plus(x, s(y))), ([1],plus(0, y) -> y), ([1,0,0],plus(s(x), y) -> plus(x, s(y))), ([1,0,0],plus(s(x), y) -> plus(x, s(y))), ([1,0,0],plus(0, y) -> y)] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) F(true, s(s(zl2)), s(zl3))[zr2 / s(zr2), zr3 / s(zr3), zt1 / plus(s(s(0)), zt1), zl2 / s(zl2), zl3 / s(zl3)]^n[zr2 / y1, zr3 / 0, zt1 / times(y1, s(s(0))), zl2 / y1, zl3 / 0, x0 / y1] -> F(true, plus(s(s(0)), plus(s(s(0)), zt1)), s(s(zr3)))[zr2 / s(zr2), zr3 / s(zr3), zt1 / plus(s(s(0)), zt1), zl2 / s(zl2), zl3 / s(zl3)]^n[zr2 / y1, zr3 / 0, zt1 / times(y1, s(s(0))), zl2 / y1, zl3 / 0, x0 / y1] by Narrowing at position: [1] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) F(true, s(s(zl2)), s(zl3))[zr2 / s(zr2), zr3 / s(zr3), zl2 / s(zl2), zl3 / s(zl3)]^n[zr2 / x0, zr3 / 0, zl2 / x0, zl3 / 0] -> F(true, times(s(s(zr2)), s(s(0))), s(s(zr3)))[zr2 / s(zr2), zr3 / s(zr3), zl2 / s(zl2), zl3 / s(zl3)]^n[zr2 / x0, zr3 / 0, zl2 / x0, zl3 / 0] by Narrowing at position: [1] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) F(true, s(s(zl2)), s(zl3))[zr2 / s(zr2), zr3 / s(zr3), zl2 / s(zl2), zl3 / s(zl3)]^n[zr2 / y0, zr3 / 0, zl2 / y0, zl3 / 0] -> F(true, double(s(s(zr2))), s(s(zr3)))[zr2 / s(zr2), zr3 / s(zr3), zl2 / s(zl2), zl3 / s(zl3)]^n[zr2 / y0, zr3 / 0, zl2 / y0, zl3 / 0] by Narrowing at position: [0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv Smu (rhs) - Equiv Smu (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) F(true, s(zs2), s(zs3))[zs2 / s(zs2), zs3 / s(zs3)]^n[zs2 / y1, zs3 / y0] -> F(gt(y1, y0), double(s(zs2)), s(s(zs3)))[zs2 / s(zs2), zs3 / s(zs3)]^n[zs2 / y1, zs3 / y0] by Narrowing at position: [0] intermediate steps: Instantiate mu - Instantiate Sigma - Instantiation - Instantiation - Instantiation F(true, x, y)[ ]^n[ ] -> F(gt(x, y), double(x), s(y))[ ]^n[ ] by Rule from TRS P intermediate steps: Equiv IPS (rhs) - Equiv IPS (rhs) - Instantiation - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) gt(s(x), s(y))[x / s(x), y / s(y)]^n[ ] -> gt(x, y)[ ]^n[ ] by PatternCreation I with delta: [ ], theta: [ ], sigma: [x / s(x), y / s(y)] gt(s(x), s(y))[ ]^n[ ] -> gt(x, y)[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation gt(s(x), 0)[ ]^n[ ] -> true[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate mu - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiate Sigma - Instantiation - Instantiation double(x)[ ]^n[ ] -> times(x, s(s(0)))[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv DR (lhs) - Expand Sigma - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) times(s(x), y)[x / s(x)]^n[ ] -> plus(y, z)[x / s(x), z / plus(y, z)]^n[z / times(x, y)] by PatternCreation II with pi: [1], sigma: [x / s(x)] times(s(x), y)[ ]^n[ ] -> plus(y, times(x, y))[ ]^n[ ] by Rule from TRS R ---------------------------------------- (32) NO