/export/starexec/sandbox2/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. plus : [o * o] --> o s : [o] --> o plus(s(X), plus(Y, Z)) => plus(X, plus(s(s(Y)), Z)) plus(s(X), plus(Y, plus(Z, U))) => plus(X, plus(Z, plus(Y, U))) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] plus#(s(X), plus(Y, Z)) =#> plus#(X, plus(s(s(Y)), Z)) 1] plus#(s(X), plus(Y, Z)) =#> plus#(s(s(Y)), Z) 2] plus#(s(X), plus(Y, plus(Z, U))) =#> plus#(X, plus(Z, plus(Y, U))) 3] plus#(s(X), plus(Y, plus(Z, U))) =#> plus#(Z, plus(Y, U)) 4] plus#(s(X), plus(Y, plus(Z, U))) =#> plus#(Y, U) Rules R_0: plus(s(X), plus(Y, Z)) => plus(X, plus(s(s(Y)), Z)) plus(s(X), plus(Y, plus(Z, U))) => plus(X, plus(Z, plus(Y, U))) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: plus#(s(X), plus(Y, Z)) >? plus#(X, plus(s(s(Y)), Z)) plus#(s(X), plus(Y, Z)) >? plus#(s(s(Y)), Z) plus#(s(X), plus(Y, plus(Z, U))) >? plus#(X, plus(Z, plus(Y, U))) plus#(s(X), plus(Y, plus(Z, U))) >? plus#(Z, plus(Y, U)) plus#(s(X), plus(Y, plus(Z, U))) >? plus#(Y, U) plus(s(X), plus(Y, Z)) >= plus(X, plus(s(s(Y)), Z)) plus(s(X), plus(Y, plus(Z, U))) >= plus(X, plus(Z, plus(Y, U))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: plus = \y0y1.3 + y1 plus# = \y0y1.2y1 s = \y0.0 Using this interpretation, the requirements translate to: [[plus#(s(_x0), plus(_x1, _x2))]] = 6 + 2x2 >= 6 + 2x2 = [[plus#(_x0, plus(s(s(_x1)), _x2))]] [[plus#(s(_x0), plus(_x1, _x2))]] = 6 + 2x2 > 2x2 = [[plus#(s(s(_x1)), _x2)]] [[plus#(s(_x0), plus(_x1, plus(_x2, _x3)))]] = 12 + 2x3 >= 12 + 2x3 = [[plus#(_x0, plus(_x2, plus(_x1, _x3)))]] [[plus#(s(_x0), plus(_x1, plus(_x2, _x3)))]] = 12 + 2x3 > 6 + 2x3 = [[plus#(_x2, plus(_x1, _x3))]] [[plus#(s(_x0), plus(_x1, plus(_x2, _x3)))]] = 12 + 2x3 > 2x3 = [[plus#(_x1, _x3)]] [[plus(s(_x0), plus(_x1, _x2))]] = 6 + x2 >= 6 + x2 = [[plus(_x0, plus(s(s(_x1)), _x2))]] [[plus(s(_x0), plus(_x1, plus(_x2, _x3)))]] = 9 + x3 >= 9 + x3 = [[plus(_x0, plus(_x2, plus(_x1, _x3)))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace the dependency pair problem (P_0, R_0, minimal, formative) by (P_1, R_0, minimal, formative), where P_1 consists of: plus#(s(X), plus(Y, Z)) =#> plus#(X, plus(s(s(Y)), Z)) plus#(s(X), plus(Y, plus(Z, U))) =#> plus#(X, plus(Z, plus(Y, U))) Thus, the original system is terminating if (P_1, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_1, R_0, minimal, formative). We apply the subterm criterion with the following projection function: nu(plus#) = 1 Thus, we can orient the dependency pairs as follows: nu(plus#(s(X), plus(Y, Z))) = s(X) |> X = nu(plus#(X, plus(s(s(Y)), Z))) nu(plus#(s(X), plus(Y, plus(Z, U)))) = s(X) |> X = nu(plus#(X, plus(Z, plus(Y, U)))) By [Kop12, Thm. 7.35], we may replace a dependency pair problem (P_1, R_0, minimal, f) by ({}, R_0, minimal, f). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.