/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR n u v w x y z) (RULES app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ) Problem 1: Innermost Equivalent Processor: -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: APP(add(n,x),y) -> APP(x,y) CONCAT(cons(u,v),y) -> CONCAT(v,y) LESS_LEAVES(cons(u,v),cons(w,z)) -> CONCAT(u,v) LESS_LEAVES(cons(u,v),cons(w,z)) -> CONCAT(w,z) LESS_LEAVES(cons(u,v),cons(w,z)) -> LESS_LEAVES(concat(u,v),concat(w,z)) MINUS(s(x),s(y)) -> MINUS(x,y) QUOT(s(x),s(y)) -> MINUS(x,y) QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) REVERSE(add(n,x)) -> APP(reverse(x),add(n,nil)) REVERSE(add(n,x)) -> REVERSE(x) SHUFFLE(add(n,x)) -> REVERSE(x) SHUFFLE(add(n,x)) -> SHUFFLE(reverse(x)) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil Problem 1: SCC Processor: -> Pairs: APP(add(n,x),y) -> APP(x,y) CONCAT(cons(u,v),y) -> CONCAT(v,y) LESS_LEAVES(cons(u,v),cons(w,z)) -> CONCAT(u,v) LESS_LEAVES(cons(u,v),cons(w,z)) -> CONCAT(w,z) LESS_LEAVES(cons(u,v),cons(w,z)) -> LESS_LEAVES(concat(u,v),concat(w,z)) MINUS(s(x),s(y)) -> MINUS(x,y) QUOT(s(x),s(y)) -> MINUS(x,y) QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) REVERSE(add(n,x)) -> APP(reverse(x),add(n,nil)) REVERSE(add(n,x)) -> REVERSE(x) SHUFFLE(add(n,x)) -> REVERSE(x) SHUFFLE(add(n,x)) -> SHUFFLE(reverse(x)) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->->Cycle: ->->-> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->->Cycle: ->->-> Pairs: CONCAT(cons(u,v),y) -> CONCAT(v,y) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->->Cycle: ->->-> Pairs: LESS_LEAVES(cons(u,v),cons(w,z)) -> LESS_LEAVES(concat(u,v),concat(w,z)) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->->Cycle: ->->-> Pairs: APP(add(n,x),y) -> APP(x,y) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->->Cycle: ->->-> Pairs: REVERSE(add(n,x)) -> REVERSE(x) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->->Cycle: ->->-> Pairs: SHUFFLE(add(n,x)) -> SHUFFLE(reverse(x)) ->->-> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil The problem is decomposed in 7 subproblems. Problem 1.1: Subterm Processor: -> Pairs: MINUS(s(x),s(y)) -> MINUS(x,y) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Projection: pi(MINUS) = 1 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: QUOT(s(x),s(y)) -> QUOT(minus(x,y),s(y)) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil -> Usable rules: minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [minus](X1,X2) = 2.X1 [0] = 0 [s](X) = 2.X + 2 [QUOT](X1,X2) = 2.X1 Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.3: Subterm Processor: -> Pairs: CONCAT(cons(u,v),y) -> CONCAT(v,y) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Projection: pi(CONCAT) = 1 Problem 1.3: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.4: Reduction Pairs Processor: -> Pairs: LESS_LEAVES(cons(u,v),cons(w,z)) -> LESS_LEAVES(concat(u,v),concat(w,z)) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil -> Usable rules: concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [concat](X1,X2) = X1 + X2 + 1 [cons](X1,X2) = 2.X1 + X2 + 2 [leaf] = 0 [LESS_LEAVES](X1,X2) = 2.X1 Problem 1.4: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.5: Subterm Processor: -> Pairs: APP(add(n,x),y) -> APP(x,y) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Projection: pi(APP) = 1 Problem 1.5: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.6: Subterm Processor: -> Pairs: REVERSE(add(n,x)) -> REVERSE(x) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Projection: pi(REVERSE) = 1 Problem 1.6: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.7: Reduction Pairs Processor: -> Pairs: SHUFFLE(add(n,x)) -> SHUFFLE(reverse(x)) -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil -> Usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [app](X1,X2) = X1 + X2 [reverse](X) = X + 1 [add](X1,X2) = X2 + 2 [nil] = 0 [SHUFFLE](X) = 2.X Problem 1.7: SCC Processor: -> Pairs: Empty -> Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil,y) -> y concat(cons(u,v),y) -> cons(u,concat(v,y)) concat(leaf,y) -> y less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z)) less_leaves(leaf,cons(w,z)) -> true less_leaves(x,leaf) -> false minus(s(x),s(y)) -> minus(x,y) minus(x,0) -> x quot(0,s(y)) -> 0 quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) reverse(add(n,x)) -> app(reverse(x),add(n,nil)) reverse(nil) -> nil shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil) -> nil ->Strongly Connected Components: There is no strongly connected component The problem is finite.