/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 19 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QReductionProof [EQUIVALENT, 0 ms] (39) QDP (40) QDPOrderProof [EQUIVALENT, 31 ms] (41) QDP (42) PisEmptyProof [EQUIVALENT, 0 ms] (43) YES (44) QDP (45) UsableRulesProof [EQUIVALENT, 0 ms] (46) QDP (47) QReductionProof [EQUIVALENT, 0 ms] (48) QDP (49) QDPSizeChangeProof [EQUIVALENT, 0 ms] (50) YES (51) QDP (52) UsableRulesProof [EQUIVALENT, 0 ms] (53) QDP (54) QReductionProof [EQUIVALENT, 0 ms] (55) QDP (56) QDPOrderProof [EQUIVALENT, 1 ms] (57) QDP (58) PisEmptyProof [EQUIVALENT, 0 ms] (59) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) QUOT(s(x), s(y)) -> MINUS(x, y) LE(s(x), s(y)) -> LE(x, y) APP(add(n, x), y) -> APP(x, y) LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) LOW(n, add(m, x)) -> LE(m, n) IF_LOW(true, n, add(m, x)) -> LOW(n, x) IF_LOW(false, n, add(m, x)) -> LOW(n, x) HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) HIGH(n, add(m, x)) -> LE(m, n) IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) QUICKSORT(add(n, x)) -> APP(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x)) QUICKSORT(add(n, x)) -> LOW(n, x) QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x)) QUICKSORT(add(n, x)) -> HIGH(n, x) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 6 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(add(n, x), y) -> APP(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) The graph contains the following edges 1 >= 2, 2 >= 3 *IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) The graph contains the following edges 2 >= 1, 3 > 2 *IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) The graph contains the following edges 2 >= 1, 3 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) IF_LOW(true, n, add(m, x)) -> LOW(n, x) IF_LOW(false, n, add(m, x)) -> LOW(n, x) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) IF_LOW(true, n, add(m, x)) -> LOW(n, x) IF_LOW(false, n, add(m, x)) -> LOW(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) IF_LOW(true, n, add(m, x)) -> LOW(n, x) IF_LOW(false, n, add(m, x)) -> LOW(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) The graph contains the following edges 1 >= 2, 2 >= 3 *IF_LOW(true, n, add(m, x)) -> LOW(n, x) The graph contains the following edges 2 >= 1, 3 > 2 *IF_LOW(false, n, add(m, x)) -> LOW(n, x) The graph contains the following edges 2 >= 1, 3 > 2 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x)) QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x)) QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x)) The TRS R consists of the following rules: low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(false, n, add(m, x)) -> low(n, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if_low(true, n, add(m, x)) -> add(m, low(n, x)) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) quicksort(nil) quicksort(add(x0, x1)) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x)) QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x)) The TRS R consists of the following rules: low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(false, n, add(m, x)) -> low(n, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if_low(true, n, add(m, x)) -> add(m, low(n, x)) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUICKSORT(add(n, x)) -> QUICKSORT(high(n, x)) QUICKSORT(add(n, x)) -> QUICKSORT(low(n, x)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( QUICKSORT_1(x_1) ) = max{0, 2x_1 - 1} POL( high_2(x_1, x_2) ) = 2x_2 POL( nil ) = 0 POL( add_2(x_1, x_2) ) = 2x_1 + 2x_2 + 2 POL( if_high_3(x_1, ..., x_3) ) = 2x_3 POL( le_2(x_1, x_2) ) = 0 POL( true ) = 0 POL( low_2(x_1, x_2) ) = 2x_2 POL( if_low_3(x_1, ..., x_3) ) = max{0, 2x_3 - 2} POL( false ) = 0 POL( 0 ) = 0 POL( s_1(x_1) ) = 2x_1 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(false, n, add(m, x)) -> low(n, x) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_high(false, n, add(m, x)) -> add(m, high(n, x)) ---------------------------------------- (41) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(false, n, add(m, x)) -> low(n, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if_low(true, n, add(m, x)) -> add(m, low(n, x)) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (43) YES ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (50) YES ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) quot(0, s(y)) -> 0 quot(s(x), s(y)) -> s(quot(minus(x, y), s(y))) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) quicksort(nil) -> nil quicksort(add(n, x)) -> app(quicksort(low(n, x)), add(n, quicksort(high(n, x)))) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. quot(0, s(x0)) quot(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) quicksort(nil) quicksort(add(x0, x1)) ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. QUOT(x1, x2) = x1 s(x1) = s(x1) minus(x1, x2) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: s_1=1 dummyConstant=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) ---------------------------------------- (57) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) The set Q consists of the following terms: minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (59) YES