/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 27 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) MNOCProof [EQUIVALENT, 0 ms] (6) QDP (7) QDPSizeChangeProof [EQUIVALENT, 0 ms] (8) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: app(app(., 1), x) -> x app(app(., x), 1) -> x app(app(., app(i, x)), x) -> 1 app(app(., x), app(i, x)) -> 1 app(app(., app(i, y)), app(app(., y), z)) -> z app(app(., y), app(app(., app(i, y)), z)) -> z app(i, 1) -> 1 app(i, app(i, x)) -> x app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: APP(app(map, f), app(app(cons, x), xs)) -> APP(app(cons, app(f, x)), app(app(map, f), xs)) APP(app(map, f), app(app(cons, x), xs)) -> APP(cons, app(f, x)) APP(app(map, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(map, f), app(app(cons, x), xs)) -> APP(app(map, f), xs) APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(app(app(filter2, app(f, x)), f), x), xs) APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(app(filter2, app(f, x)), f), x) APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(filter2, app(f, x)), f) APP(app(filter, f), app(app(cons, x), xs)) -> APP(filter2, app(f, x)) APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(app(app(filter2, true), f), x), xs) -> APP(app(cons, x), app(app(filter, f), xs)) APP(app(app(app(filter2, true), f), x), xs) -> APP(cons, x) APP(app(app(app(filter2, true), f), x), xs) -> APP(app(filter, f), xs) APP(app(app(app(filter2, true), f), x), xs) -> APP(filter, f) APP(app(app(app(filter2, false), f), x), xs) -> APP(app(filter, f), xs) APP(app(app(app(filter2, false), f), x), xs) -> APP(filter, f) The TRS R consists of the following rules: app(app(., 1), x) -> x app(app(., x), 1) -> x app(app(., app(i, x)), x) -> 1 app(app(., x), app(i, x)) -> 1 app(app(., app(i, y)), app(app(., y), z)) -> z app(app(., y), app(app(., app(i, y)), z)) -> z app(i, 1) -> 1 app(i, app(i, x)) -> x app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 9 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: APP(app(map, f), app(app(cons, x), xs)) -> APP(app(map, f), xs) APP(app(map, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(app(app(filter2, app(f, x)), f), x), xs) APP(app(app(app(filter2, true), f), x), xs) -> APP(app(filter, f), xs) APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(app(app(filter2, false), f), x), xs) -> APP(app(filter, f), xs) The TRS R consists of the following rules: app(app(., 1), x) -> x app(app(., x), 1) -> x app(app(., app(i, x)), x) -> 1 app(app(., x), app(i, x)) -> 1 app(app(., app(i, y)), app(app(., y), z)) -> z app(app(., y), app(app(., app(i, y)), z)) -> z app(i, 1) -> 1 app(i, app(i, x)) -> x app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: APP(app(map, f), app(app(cons, x), xs)) -> APP(app(map, f), xs) APP(app(map, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(app(app(filter2, app(f, x)), f), x), xs) APP(app(app(app(filter2, true), f), x), xs) -> APP(app(filter, f), xs) APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x) APP(app(app(app(filter2, false), f), x), xs) -> APP(app(filter, f), xs) The TRS R consists of the following rules: app(app(., 1), x) -> x app(app(., x), 1) -> x app(app(., app(i, x)), x) -> 1 app(app(., x), app(i, x)) -> 1 app(app(., app(i, y)), app(app(., y), z)) -> z app(app(., y), app(app(., app(i, y)), z)) -> z app(i, 1) -> 1 app(i, app(i, x)) -> x app(app(map, f), nil) -> nil app(app(map, f), app(app(cons, x), xs)) -> app(app(cons, app(f, x)), app(app(map, f), xs)) app(app(filter, f), nil) -> nil app(app(filter, f), app(app(cons, x), xs)) -> app(app(app(app(filter2, app(f, x)), f), x), xs) app(app(app(app(filter2, true), f), x), xs) -> app(app(cons, x), app(app(filter, f), xs)) app(app(app(app(filter2, false), f), x), xs) -> app(app(filter, f), xs) The set Q consists of the following terms: app(app(., 1), x0) app(app(., x0), 1) app(app(., app(i, x0)), x0) app(app(., x0), app(i, x0)) app(app(., app(i, x0)), app(app(., x0), x1)) app(app(., x0), app(app(., app(i, x0)), x1)) app(i, 1) app(i, app(i, x0)) app(app(map, x0), nil) app(app(map, x0), app(app(cons, x1), x2)) app(app(filter, x0), nil) app(app(filter, x0), app(app(cons, x1), x2)) app(app(app(app(filter2, true), x0), x1), x2) app(app(app(app(filter2, false), x0), x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(app(filter, f), app(app(cons, x), xs)) -> APP(f, x) The graph contains the following edges 1 > 1, 2 > 2 *APP(app(map, f), app(app(cons, x), xs)) -> APP(f, x) The graph contains the following edges 1 > 1, 2 > 2 *APP(app(map, f), app(app(cons, x), xs)) -> APP(app(map, f), xs) The graph contains the following edges 1 >= 1, 2 > 2 *APP(app(filter, f), app(app(cons, x), xs)) -> APP(app(app(app(filter2, app(f, x)), f), x), xs) The graph contains the following edges 2 > 2 *APP(app(app(app(filter2, true), f), x), xs) -> APP(app(filter, f), xs) The graph contains the following edges 2 >= 2 *APP(app(app(app(filter2, false), f), x), xs) -> APP(app(filter, f), xs) The graph contains the following edges 2 >= 2 ---------------------------------------- (8) YES