/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. and : [o * o] --> o not : [o] --> o or : [o * o] --> o not(not(X)) => X not(or(X, Y)) => and(not(not(not(X))), not(not(not(Y)))) not(and(X, Y)) => or(not(not(not(X))), not(not(not(Y)))) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, formative): Dependency Pairs P_0: 0] not#(or(X, Y)) =#> not#(not(not(X))) 1] not#(or(X, Y)) =#> not#(not(X)) 2] not#(or(X, Y)) =#> not#(X) 3] not#(or(X, Y)) =#> not#(not(not(Y))) 4] not#(or(X, Y)) =#> not#(not(Y)) 5] not#(or(X, Y)) =#> not#(Y) 6] not#(and(X, Y)) =#> not#(not(not(X))) 7] not#(and(X, Y)) =#> not#(not(X)) 8] not#(and(X, Y)) =#> not#(X) 9] not#(and(X, Y)) =#> not#(not(not(Y))) 10] not#(and(X, Y)) =#> not#(not(Y)) 11] not#(and(X, Y)) =#> not#(Y) Rules R_0: not(not(X)) => X not(or(X, Y)) => and(not(not(not(X))), not(not(not(Y)))) not(and(X, Y)) => or(not(not(not(X))), not(not(not(Y)))) Thus, the original system is terminating if (P_0, R_0, minimal, formative) is finite. We consider the dependency pair problem (P_0, R_0, minimal, formative). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: not#(or(X, Y)) >? not#(not(not(X))) not#(or(X, Y)) >? not#(not(X)) not#(or(X, Y)) >? not#(X) not#(or(X, Y)) >? not#(not(not(Y))) not#(or(X, Y)) >? not#(not(Y)) not#(or(X, Y)) >? not#(Y) not#(and(X, Y)) >? not#(not(not(X))) not#(and(X, Y)) >? not#(not(X)) not#(and(X, Y)) >? not#(X) not#(and(X, Y)) >? not#(not(not(Y))) not#(and(X, Y)) >? not#(not(Y)) not#(and(X, Y)) >? not#(Y) not(not(X)) >= X not(or(X, Y)) >= and(not(not(not(X))), not(not(not(Y)))) not(and(X, Y)) >= or(not(not(not(X))), not(not(not(Y)))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: and = \y0y1.1 + y1 + 2y0 not = \y0.y0 not# = \y0.2y0 or = \y0y1.1 + y1 + 2y0 Using this interpretation, the requirements translate to: [[not#(or(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x0 = [[not#(not(not(_x0)))]] [[not#(or(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x0 = [[not#(not(_x0))]] [[not#(or(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x0 = [[not#(_x0)]] [[not#(or(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x1 = [[not#(not(not(_x1)))]] [[not#(or(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x1 = [[not#(not(_x1))]] [[not#(or(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x1 = [[not#(_x1)]] [[not#(and(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x0 = [[not#(not(not(_x0)))]] [[not#(and(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x0 = [[not#(not(_x0))]] [[not#(and(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x0 = [[not#(_x0)]] [[not#(and(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x1 = [[not#(not(not(_x1)))]] [[not#(and(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x1 = [[not#(not(_x1))]] [[not#(and(_x0, _x1))]] = 2 + 2x1 + 4x0 > 2x1 = [[not#(_x1)]] [[not(not(_x0))]] = x0 >= x0 = [[_x0]] [[not(or(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[and(not(not(not(_x0))), not(not(not(_x1))))]] [[not(and(_x0, _x1))]] = 1 + x1 + 2x0 >= 1 + x1 + 2x0 = [[or(not(not(not(_x0))), not(not(not(_x1))))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_0, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.