/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 7 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) TransformationProof [EQUIVALENT, 0 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) QDP (30) UsableRulesProof [EQUIVALENT, 0 ms] (31) QDP (32) QReductionProof [EQUIVALENT, 0 ms] (33) QDP (34) TransformationProof [EQUIVALENT, 0 ms] (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QReductionProof [EQUIVALENT, 0 ms] (39) QDP (40) TransformationProof [EQUIVALENT, 0 ms] (41) QDP (42) DependencyGraphProof [EQUIVALENT, 0 ms] (43) QDP (44) UsableRulesProof [EQUIVALENT, 0 ms] (45) QDP (46) QReductionProof [EQUIVALENT, 0 ms] (47) QDP (48) QDPOrderProof [EQUIVALENT, 7 ms] (49) QDP (50) PisEmptyProof [EQUIVALENT, 0 ms] (51) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false tail(add(n, x)) -> x tail(nil) -> nil head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(x) -> shuff(x, nil) shuff(x, y) -> if(null(x), x, y, app(y, add(head(x), nil))) if(true, x, y, z) -> y if(false, x, y, z) -> shuff(reverse(tail(x)), z) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false tail(add(n, x)) -> x tail(nil) -> nil head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(x) -> shuff(x, nil) shuff(x, y) -> if(null(x), x, y, app(y, add(head(x), nil))) if(true, x, y, z) -> y if(false, x, y, z) -> shuff(reverse(tail(x)), z) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) REVERSE(add(n, x)) -> APP(reverse(x), add(n, nil)) REVERSE(add(n, x)) -> REVERSE(x) SHUFFLE(x) -> SHUFF(x, nil) SHUFF(x, y) -> IF(null(x), x, y, app(y, add(head(x), nil))) SHUFF(x, y) -> NULL(x) SHUFF(x, y) -> APP(y, add(head(x), nil)) SHUFF(x, y) -> HEAD(x) IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) IF(false, x, y, z) -> REVERSE(tail(x)) IF(false, x, y, z) -> TAIL(x) The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false tail(add(n, x)) -> x tail(nil) -> nil head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(x) -> shuff(x, nil) shuff(x, y) -> if(null(x), x, y, app(y, add(head(x), nil))) if(true, x, y, z) -> y if(false, x, y, z) -> shuff(reverse(tail(x)), z) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false tail(add(n, x)) -> x tail(nil) -> nil head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(x) -> shuff(x, nil) shuff(x, y) -> if(null(x), x, y, app(y, add(head(x), nil))) if(true, x, y, z) -> y if(false, x, y, z) -> shuff(reverse(tail(x)), z) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(add(n, x), y) -> APP(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: REVERSE(add(n, x)) -> REVERSE(x) The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false tail(add(n, x)) -> x tail(nil) -> nil head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(x) -> shuff(x, nil) shuff(x, y) -> if(null(x), x, y, app(y, add(head(x), nil))) if(true, x, y, z) -> y if(false, x, y, z) -> shuff(reverse(tail(x)), z) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: REVERSE(add(n, x)) -> REVERSE(x) R is empty. The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: REVERSE(add(n, x)) -> REVERSE(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *REVERSE(add(n, x)) -> REVERSE(x) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) SHUFF(x, y) -> IF(null(x), x, y, app(y, add(head(x), nil))) The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false tail(add(n, x)) -> x tail(nil) -> nil head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) shuffle(x) -> shuff(x, nil) shuff(x, y) -> if(null(x), x, y, app(y, add(head(x), nil))) if(true, x, y, z) -> y if(false, x, y, z) -> shuff(reverse(tail(x)), z) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) SHUFF(x, y) -> IF(null(x), x, y, app(y, add(head(x), nil))) The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. shuffle(x0) shuff(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) SHUFF(x, y) -> IF(null(x), x, y, app(y, add(head(x), nil))) The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule SHUFF(x, y) -> IF(null(x), x, y, app(y, add(head(x), nil))) at position [0] we obtained the following new rules [LPAR04]: (SHUFF(nil, y1) -> IF(true, nil, y1, app(y1, add(head(nil), nil))),SHUFF(nil, y1) -> IF(true, nil, y1, app(y1, add(head(nil), nil)))) (SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil))),SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil)))) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) SHUFF(nil, y1) -> IF(true, nil, y1, app(y1, add(head(nil), nil))) SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil))) The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil))) IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) The TRS R consists of the following rules: null(nil) -> true null(add(n, x)) -> false head(add(n, x)) -> n app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (31) Obligation: Q DP problem: The TRS P consists of the following rules: SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil))) IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) The TRS R consists of the following rules: tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) head(add(n, x)) -> n The set Q consists of the following terms: null(nil) null(add(x0, x1)) tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (32) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. null(nil) null(add(x0, x1)) ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil))) IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) The TRS R consists of the following rules: tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) head(add(n, x)) -> n The set Q consists of the following terms: tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(head(add(x0, x1)), nil))) at position [3,1,0] we obtained the following new rules [LPAR04]: (SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))),SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil)))) ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) The TRS R consists of the following rules: tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) head(add(n, x)) -> n The set Q consists of the following terms: tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: tail(add(x0, x1)) tail(nil) head(add(x0, x1)) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. head(add(x0, x1)) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: tail(add(x0, x1)) tail(nil) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule IF(false, x, y, z) -> SHUFF(reverse(tail(x)), z) at position [0] we obtained the following new rules [LPAR04]: (IF(false, add(x0, x1), y1, y2) -> SHUFF(reverse(x1), y2),IF(false, add(x0, x1), y1, y2) -> SHUFF(reverse(x1), y2)) (IF(false, nil, y1, y2) -> SHUFF(reverse(nil), y2),IF(false, nil, y1, y2) -> SHUFF(reverse(nil), y2)) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) IF(false, add(x0, x1), y1, y2) -> SHUFF(reverse(x1), y2) IF(false, nil, y1, y2) -> SHUFF(reverse(nil), y2) The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: tail(add(x0, x1)) tail(nil) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, add(x0, x1), y1, y2) -> SHUFF(reverse(x1), y2) SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) tail(add(n, x)) -> x tail(nil) -> nil reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: tail(add(x0, x1)) tail(nil) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, add(x0, x1), y1, y2) -> SHUFF(reverse(x1), y2) SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: tail(add(x0, x1)) tail(nil) app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. tail(add(x0, x1)) tail(nil) ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, add(x0, x1), y1, y2) -> SHUFF(reverse(x1), y2) SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF(false, add(x0, x1), y1, y2) -> SHUFF(reverse(x1), y2) SHUFF(add(x0, x1), y1) -> IF(false, add(x0, x1), y1, app(y1, add(x0, nil))) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( SHUFF_2(x_1, x_2) ) = 2x_1 + 1 POL( reverse_1(x_1) ) = x_1 POL( nil ) = 0 POL( add_2(x_1, x_2) ) = x_2 + 2 POL( app_2(x_1, x_2) ) = x_1 + x_2 POL( IF_4(x_1, ..., x_4) ) = max{0, 2x_1 + 2x_2 - 2} POL( false ) = 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) ---------------------------------------- (49) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) reverse(nil) -> nil reverse(add(n, x)) -> app(reverse(x), add(n, nil)) The set Q consists of the following terms: app(nil, x0) app(add(x0, x1), x2) reverse(nil) reverse(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (51) YES