/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 16 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPOrderProof [EQUIVALENT, 0 ms] (34) QDP (35) PisEmptyProof [EQUIVALENT, 0 ms] (36) YES (37) QDP (38) UsableRulesProof [EQUIVALENT, 0 ms] (39) QDP (40) QReductionProof [EQUIVALENT, 0 ms] (41) QDP (42) TransformationProof [EQUIVALENT, 0 ms] (43) QDP (44) DependencyGraphProof [EQUIVALENT, 0 ms] (45) QDP (46) UsableRulesProof [EQUIVALENT, 0 ms] (47) QDP (48) QReductionProof [EQUIVALENT, 0 ms] (49) QDP (50) TransformationProof [EQUIVALENT, 0 ms] (51) QDP (52) Induction-Processor [SOUND, 86 ms] (53) AND (54) QDP (55) DependencyGraphProof [EQUIVALENT, 0 ms] (56) TRUE (57) QTRS (58) Overlay + Local Confluence [EQUIVALENT, 0 ms] (59) QTRS (60) DependencyPairsProof [EQUIVALENT, 0 ms] (61) QDP (62) DependencyGraphProof [EQUIVALENT, 0 ms] (63) AND (64) QDP (65) UsableRulesProof [EQUIVALENT, 0 ms] (66) QDP (67) QReductionProof [EQUIVALENT, 0 ms] (68) QDP (69) QDPSizeChangeProof [EQUIVALENT, 0 ms] (70) YES (71) QDP (72) UsableRulesProof [EQUIVALENT, 0 ms] (73) QDP (74) QReductionProof [EQUIVALENT, 0 ms] (75) QDP (76) QDPSizeChangeProof [EQUIVALENT, 0 ms] (77) YES (78) QDP (79) UsableRulesProof [EQUIVALENT, 0 ms] (80) QDP (81) QReductionProof [EQUIVALENT, 0 ms] (82) QDP (83) QDPSizeChangeProof [EQUIVALENT, 0 ms] (84) YES (85) QDP (86) UsableRulesProof [EQUIVALENT, 0 ms] (87) QDP (88) QReductionProof [EQUIVALENT, 0 ms] (89) QDP (90) QDPSizeChangeProof [EQUIVALENT, 0 ms] (91) YES (92) QDP (93) UsableRulesProof [EQUIVALENT, 0 ms] (94) QDP (95) QReductionProof [EQUIVALENT, 0 ms] (96) QDP (97) QDPSizeChangeProof [EQUIVALENT, 0 ms] (98) YES (99) QDP (100) UsableRulesProof [EQUIVALENT, 0 ms] (101) QDP (102) QReductionProof [EQUIVALENT, 0 ms] (103) QDP (104) QDPOrderProof [EQUIVALENT, 0 ms] (105) QDP (106) PisEmptyProof [EQUIVALENT, 0 ms] (107) YES (108) QDP (109) UsableRulesProof [EQUIVALENT, 0 ms] (110) QDP (111) QReductionProof [EQUIVALENT, 0 ms] (112) QDP (113) QDPSizeChangeProof [EQUIVALENT, 0 ms] (114) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: MAX(cons(x, cons(y, xs))) -> IF1(ge(x, y), x, y, xs) MAX(cons(x, cons(y, xs))) -> GE(x, y) IF1(true, x, y, xs) -> MAX(cons(x, xs)) IF1(false, x, y, xs) -> MAX(cons(y, xs)) DEL(x, cons(y, xs)) -> IF2(eq(x, y), x, y, xs) DEL(x, cons(y, xs)) -> EQ(x, y) IF2(false, x, y, xs) -> DEL(x, xs) EQ(s(x), s(y)) -> EQ(x, y) SORT(xs) -> IF3(empty(xs), xs) SORT(xs) -> EMPTY(xs) IF3(false, xs) -> SORT(del(max(xs), xs)) IF3(false, xs) -> DEL(max(xs), xs) IF3(false, xs) -> MAX(xs) GE(s(x), s(y)) -> GE(x, y) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 5 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) R is empty. The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x), s(y)) -> GE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(s(x), s(y)) -> GE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x), s(y)) -> EQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false, x, y, xs) -> DEL(x, xs) DEL(x, cons(y, xs)) -> IF2(eq(x, y), x, y, xs) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false, x, y, xs) -> DEL(x, xs) DEL(x, cons(y, xs)) -> IF2(eq(x, y), x, y, xs) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false, x, y, xs) -> DEL(x, xs) DEL(x, cons(y, xs)) -> IF2(eq(x, y), x, y, xs) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DEL(x, cons(y, xs)) -> IF2(eq(x, y), x, y, xs) The graph contains the following edges 1 >= 2, 2 > 3, 2 > 4 *IF2(false, x, y, xs) -> DEL(x, xs) The graph contains the following edges 2 >= 1, 4 >= 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: IF1(true, x, y, xs) -> MAX(cons(x, xs)) MAX(cons(x, cons(y, xs))) -> IF1(ge(x, y), x, y, xs) IF1(false, x, y, xs) -> MAX(cons(y, xs)) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: IF1(true, x, y, xs) -> MAX(cons(x, xs)) MAX(cons(x, cons(y, xs))) -> IF1(ge(x, y), x, y, xs) IF1(false, x, y, xs) -> MAX(cons(y, xs)) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: IF1(true, x, y, xs) -> MAX(cons(x, xs)) MAX(cons(x, cons(y, xs))) -> IF1(ge(x, y), x, y, xs) IF1(false, x, y, xs) -> MAX(cons(y, xs)) The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF1(true, x, y, xs) -> MAX(cons(x, xs)) MAX(cons(x, cons(y, xs))) -> IF1(ge(x, y), x, y, xs) IF1(false, x, y, xs) -> MAX(cons(y, xs)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. IF1(x1, x2, x3, x4) = IF1(x4) MAX(x1) = x1 cons(x1, x2) = cons(x2) Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 IF1_1=3 cons_1=2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (34) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (36) YES ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: IF3(false, xs) -> SORT(del(max(xs), xs)) SORT(xs) -> IF3(empty(xs), xs) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) sort(xs) -> if3(empty(xs), xs) if3(true, xs) -> nil if3(false, xs) -> sort(del(max(xs), xs)) empty(nil) -> true empty(cons(x, xs)) -> false ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: IF3(false, xs) -> SORT(del(max(xs), xs)) SORT(xs) -> IF3(empty(xs), xs) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, xs)) -> false max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) sort(x0) if3(true, x0) if3(false, x0) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. sort(x0) if3(true, x0) if3(false, x0) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: IF3(false, xs) -> SORT(del(max(xs), xs)) SORT(xs) -> IF3(empty(xs), xs) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, xs)) -> false max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule SORT(xs) -> IF3(empty(xs), xs) at position [0] we obtained the following new rules [LPAR04]: (SORT(nil) -> IF3(true, nil),SORT(nil) -> IF3(true, nil)) (SORT(cons(x0, x1)) -> IF3(false, cons(x0, x1)),SORT(cons(x0, x1)) -> IF3(false, cons(x0, x1))) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: IF3(false, xs) -> SORT(del(max(xs), xs)) SORT(nil) -> IF3(true, nil) SORT(cons(x0, x1)) -> IF3(false, cons(x0, x1)) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, xs)) -> false max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: SORT(cons(x0, x1)) -> IF3(false, cons(x0, x1)) IF3(false, xs) -> SORT(del(max(xs), xs)) The TRS R consists of the following rules: empty(nil) -> true empty(cons(x, xs)) -> false max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: SORT(cons(x0, x1)) -> IF3(false, cons(x0, x1)) IF3(false, xs) -> SORT(del(max(xs), xs)) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) empty(nil) empty(cons(x0, x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. empty(nil) empty(cons(x0, x1)) ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: SORT(cons(x0, x1)) -> IF3(false, cons(x0, x1)) IF3(false, xs) -> SORT(del(max(xs), xs)) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule IF3(false, xs) -> SORT(del(max(xs), xs)) we obtained the following new rules [LPAR04]: (IF3(false, cons(z0, z1)) -> SORT(del(max(cons(z0, z1)), cons(z0, z1))),IF3(false, cons(z0, z1)) -> SORT(del(max(cons(z0, z1)), cons(z0, z1)))) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: SORT(cons(x0, x1)) -> IF3(false, cons(x0, x1)) IF3(false, cons(z0, z1)) -> SORT(del(max(cons(z0, z1)), cons(z0, z1))) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) Induction-Processor (SOUND) This DP could be deleted by the Induction-Processor: IF3(false_renamed, cons(z0, z1)) -> SORT(del(max(cons(z0, z1)), cons(z0, z1))) This order was computed: Polynomial interpretation [POLO]: POL(0) = 1 POL(IF3(x_1, x_2)) = x_1 + x_2 POL(SORT(x_1)) = 1 + x_1 POL(cons(x_1, x_2)) = 1 + x_1 + x_2 POL(del(x_1, x_2)) = x_2 POL(eq(x_1, x_2)) = 1 + x_1 + x_2 POL(false_renamed) = 1 POL(ge(x_1, x_2)) = 1 POL(if1(x_1, x_2, x_3, x_4)) = 1 + x_1 + x_2 + x_3 + x_4 POL(if2(x_1, x_2, x_3, x_4)) = 1 + x_3 + x_4 POL(max(x_1)) = x_1 POL(nil) = 1 POL(s(x_1)) = 1 + x_1 POL(true_renamed) = 1 At least one of these decreasing rules is always used after the deleted DP: if2(true_renamed, x7, y4, xs2) -> xs2 The following formula is valid: z2:sort[a34].(~(z2=nil)->del'(max(z2), z2)=true) The transformed set: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The proof given by the theorem prover: The following output was given by the internal theorem prover:proof of internal # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Partial correctness of the following Program [x, v54, v55, v56, v57, v58, v59, v60, v61, v62, x3, x4, y1, xs1, x7, y4, xs2, x8, y5, x', y, xs, y2, x5, x6, y3, x9, x10, x11, y6, x'', y', x2, y'', xs', xs''] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> equal_sort[a33](v59, v61) and equal_sort[a34](v60, v62) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true del'(x3, nil) -> false equal_sort[a46](eq(x4, y1), true_renamed) -> true | del'(x4, cons(y1, xs1)) -> true equal_sort[a46](eq(x4, y1), true_renamed) -> false | del'(x4, cons(y1, xs1)) -> del'(x4, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, nil) -> false if2'(false_renamed, x8, y5, cons(y1, xs1)) -> if2'(eq(x8, y1), x8, y1, xs1) max(nil) -> 0 max(cons(x, nil)) -> x equal_sort[a46](ge(x', y), true_renamed) -> true | max(cons(x', cons(y, xs))) -> max(cons(x', xs)) equal_sort[a46](ge(x', y), true_renamed) -> false | max(cons(x', cons(y, xs))) -> max(cons(y, xs)) del(x3, nil) -> nil equal_sort[a46](eq(x4, y1), true_renamed) -> true | del(x4, cons(y1, xs1)) -> xs1 equal_sort[a46](eq(x4, y1), true_renamed) -> false | del(x4, cons(y1, xs1)) -> cons(y1, del(x4, xs1)) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, nil) -> cons(y5, nil) if2(false_renamed, x8, y5, cons(y1, xs1)) -> cons(y5, if2(eq(x8, y1), x8, y1, xs1)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) if1(true_renamed, x'', y', nil) -> x'' if1(true_renamed, x'', y', cons(y, xs)) -> if1(ge(x'', y), x'', y, xs) if1(false_renamed, x2, y'', nil) -> y'' if1(false_renamed, x2, y'', cons(y, xs)) -> if1(ge(y'', y), y'', y, xs) if1(true_renamed, x'', y', xs') -> 0 if1(false_renamed, x2, y'', xs'') -> 0 using the following formula: z2:sort[a34].(~(z2=nil)->del'(max(z2), z2)=true) could be successfully shown: (0) Formula (1) Induction by algorithm [EQUIVALENT, 0 ms] (2) AND (3) Formula (4) Symbolic evaluation [EQUIVALENT, 0 ms] (5) YES (6) Formula (7) Symbolic evaluation [EQUIVALENT, 0 ms] (8) Formula (9) Induction by data structure [EQUIVALENT, 0 ms] (10) AND (11) Formula (12) Symbolic evaluation [EQUIVALENT, 0 ms] (13) YES (14) Formula (15) Conditional Evaluation [EQUIVALENT, 0 ms] (16) AND (17) Formula (18) Symbolic evaluation [EQUIVALENT, 0 ms] (19) YES (20) Formula (21) Symbolic evaluation [EQUIVALENT, 0 ms] (22) Formula (23) Hypothesis Lifting [EQUIVALENT, 0 ms] (24) Formula (25) Symbolic evaluation under hypothesis [SOUND, 0 ms] (26) Formula (27) Hypothesis Lifting [EQUIVALENT, 0 ms] (28) Formula (29) Hypothesis Lifting [EQUIVALENT, 0 ms] (30) Formula (31) Conditional Evaluation [EQUIVALENT, 0 ms] (32) AND (33) Formula (34) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms] (35) YES (36) Formula (37) Symbolic evaluation [EQUIVALENT, 0 ms] (38) YES (39) Formula (40) Symbolic evaluation [EQUIVALENT, 0 ms] (41) Formula (42) Conditional Evaluation [EQUIVALENT, 0 ms] (43) Formula (44) Conditional Evaluation [EQUIVALENT, 0 ms] (45) AND (46) Formula (47) Symbolic evaluation [EQUIVALENT, 0 ms] (48) YES (49) Formula (50) Conditional Evaluation [EQUIVALENT, 0 ms] (51) AND (52) Formula (53) Symbolic evaluation [EQUIVALENT, 0 ms] (54) YES (55) Formula (56) Hypothesis Lifting [EQUIVALENT, 0 ms] (57) Formula (58) Conditional Evaluation [EQUIVALENT, 0 ms] (59) Formula (60) Symbolic evaluation [EQUIVALENT, 0 ms] (61) YES (62) Formula (63) Symbolic evaluation [EQUIVALENT, 0 ms] (64) Formula (65) Conditional Evaluation [EQUIVALENT, 0 ms] (66) Formula (67) Conditional Evaluation [EQUIVALENT, 0 ms] (68) AND (69) Formula (70) Symbolic evaluation [EQUIVALENT, 0 ms] (71) YES (72) Formula (73) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms] (74) YES ---------------------------------------- (0) Obligation: Formula: z2:sort[a34].(~(z2=nil)->del'(max(z2), z2)=true) There are no hypotheses. ---------------------------------------- (1) Induction by algorithm (EQUIVALENT) Induction by algorithm max(z2) generates the following cases: 1. Base Case: Formula: (~(nil=nil)->del'(max(nil), nil)=true) There are no hypotheses. 2. Base Case: Formula: x:sort[a33].(~(cons(x, nil)=nil)->del'(max(cons(x, nil)), cons(x, nil))=true) There are no hypotheses. 1. Step Case: Formula: x':sort[a33],y:sort[a33],xs:sort[a34].(~(cons(x', cons(y, xs))=nil)->del'(max(cons(x', cons(y, xs))), cons(x', cons(y, xs)))=true) Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true 2. Step Case: Formula: x':sort[a33],y:sort[a33],xs:sort[a34].(~(cons(x', cons(y, xs))=nil)->del'(max(cons(x', cons(y, xs))), cons(x', cons(y, xs)))=true) Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false ---------------------------------------- (2) Complex Obligation (AND) ---------------------------------------- (3) Obligation: Formula: (~(nil=nil)->del'(max(nil), nil)=true) There are no hypotheses. ---------------------------------------- (4) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (5) YES ---------------------------------------- (6) Obligation: Formula: x:sort[a33].(~(cons(x, nil)=nil)->del'(max(cons(x, nil)), cons(x, nil))=true) There are no hypotheses. ---------------------------------------- (7) Symbolic evaluation (EQUIVALENT) Could be shown by simple symbolic evaluation. ---------------------------------------- (8) Obligation: Formula: x:sort[a33].del'(x, cons(x, nil))=true There are no hypotheses. ---------------------------------------- (9) Induction by data structure (EQUIVALENT) Induction by data structure sort[a33] generates the following cases: 1. Base Case: Formula: del'(0, cons(0, nil))=true There are no hypotheses. 1. Step Case: Formula: n:sort[a33].del'(s(n), cons(s(n), nil))=true Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Formula: del'(0, cons(0, nil))=true There are no hypotheses. ---------------------------------------- (12) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Formula: n:sort[a33].del'(s(n), cons(s(n), nil))=true Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true ---------------------------------------- (15) Conditional Evaluation (EQUIVALENT) The formula could be reduced to the following new obligations by conditional evaluation: Formula: true=true Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true n:sort[a33].equal_sort[a46](eq(s(n), s(n)), true_renamed)=true Formula: n:sort[a33].del'(s(n), nil)=true Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true n:sort[a33].equal_sort[a46](eq(s(n), s(n)), true_renamed)=false ---------------------------------------- (16) Complex Obligation (AND) ---------------------------------------- (17) Obligation: Formula: true=true Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true n:sort[a33].equal_sort[a46](eq(s(n), s(n)), true_renamed)=true ---------------------------------------- (18) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Formula: n:sort[a33].del'(s(n), nil)=true Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true n:sort[a33].equal_sort[a46](eq(s(n), s(n)), true_renamed)=false ---------------------------------------- (21) Symbolic evaluation (EQUIVALENT) Could be shown by simple symbolic evaluation. ---------------------------------------- (22) Obligation: Formula: False Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true n:sort[a33].equal_sort[a46](eq(s(n), s(n)), true_renamed)=false ---------------------------------------- (23) Hypothesis Lifting (EQUIVALENT) Formula could be generalised by hypothesis lifting to the following new obligation: Formula: n:sort[a33].((del'(n, cons(n, nil))=true/\equal_sort[a46](eq(s(n), s(n)), true_renamed)=false)->False) Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true n:sort[a33].equal_sort[a46](eq(s(n), s(n)), true_renamed)=false ---------------------------------------- (24) Obligation: Formula: n:sort[a33].((del'(n, cons(n, nil))=true/\equal_sort[a46](eq(s(n), s(n)), true_renamed)=false)->False) Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true n:sort[a33].equal_sort[a46](eq(s(n), s(n)), true_renamed)=false ---------------------------------------- (25) Symbolic evaluation under hypothesis (SOUND) Could be reduced by symbolic evaluation under hypothesis to: n:sort[a33].~(equal_sort[a46](eq(n, n), true_renamed)=false) By using the following hypotheses: n:sort[a33].del'(n, cons(n, nil))=true ---------------------------------------- (26) Obligation: Formula: n:sort[a33].~(equal_sort[a46](eq(n, n), true_renamed)=false) Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true n:sort[a33].equal_sort[a46](eq(s(n), s(n)), true_renamed)=false ---------------------------------------- (27) Hypothesis Lifting (EQUIVALENT) Formula could be generalised by hypothesis lifting to the following new obligation: Formula: n:sort[a33].(equal_sort[a46](eq(n, n), true_renamed)=false->~(equal_sort[a46](eq(n, n), true_renamed)=false)) Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true ---------------------------------------- (28) Obligation: Formula: n:sort[a33].(equal_sort[a46](eq(n, n), true_renamed)=false->~(equal_sort[a46](eq(n, n), true_renamed)=false)) Hypotheses: n:sort[a33].del'(n, cons(n, nil))=true ---------------------------------------- (29) Hypothesis Lifting (EQUIVALENT) Formula could be generalised by hypothesis lifting to the following new obligation: Formula: n:sort[a33].(del'(n, cons(n, nil))=true->(equal_sort[a46](eq(n, n), true_renamed)=false->~(equal_sort[a46](eq(n, n), true_renamed)=false))) There are no hypotheses. ---------------------------------------- (30) Obligation: Formula: n:sort[a33].(del'(n, cons(n, nil))=true->(equal_sort[a46](eq(n, n), true_renamed)=false->~(equal_sort[a46](eq(n, n), true_renamed)=false))) There are no hypotheses. ---------------------------------------- (31) Conditional Evaluation (EQUIVALENT) The formula could be reduced to the following new obligations by conditional evaluation: Formula: n:sort[a33].(true=true->(equal_sort[a46](eq(n, n), true_renamed)=false->~(equal_sort[a46](eq(n, n), true_renamed)=false))) Hypotheses: n:sort[a33].equal_sort[a46](eq(n, n), true_renamed)=true Formula: n:sort[a33].(del'(n, nil)=true->(equal_sort[a46](eq(n, n), true_renamed)=false->~(equal_sort[a46](eq(n, n), true_renamed)=false))) Hypotheses: n:sort[a33].equal_sort[a46](eq(n, n), true_renamed)=false ---------------------------------------- (32) Complex Obligation (AND) ---------------------------------------- (33) Obligation: Formula: n:sort[a33].(true=true->(equal_sort[a46](eq(n, n), true_renamed)=false->~(equal_sort[a46](eq(n, n), true_renamed)=false))) Hypotheses: n:sort[a33].equal_sort[a46](eq(n, n), true_renamed)=true ---------------------------------------- (34) Symbolic evaluation under hypothesis (EQUIVALENT) Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses: n:sort[a33].equal_sort[a46](eq(n, n), true_renamed)=true ---------------------------------------- (35) YES ---------------------------------------- (36) Obligation: Formula: n:sort[a33].(del'(n, nil)=true->(equal_sort[a46](eq(n, n), true_renamed)=false->~(equal_sort[a46](eq(n, n), true_renamed)=false))) Hypotheses: n:sort[a33].equal_sort[a46](eq(n, n), true_renamed)=false ---------------------------------------- (37) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (38) YES ---------------------------------------- (39) Obligation: Formula: x':sort[a33],y:sort[a33],xs:sort[a34].(~(cons(x', cons(y, xs))=nil)->del'(max(cons(x', cons(y, xs))), cons(x', cons(y, xs)))=true) Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true ---------------------------------------- (40) Symbolic evaluation (EQUIVALENT) Could be shown by simple symbolic evaluation. ---------------------------------------- (41) Obligation: Formula: x':sort[a33],y:sort[a33],xs:sort[a34].del'(max(cons(x', cons(y, xs))), cons(x', cons(y, xs)))=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true ---------------------------------------- (42) Conditional Evaluation (EQUIVALENT) The formula could be reduced to the following new obligations by conditional evaluation: Formula: x':sort[a33],xs:sort[a34],y:sort[a33].del'(max(cons(x', xs)), cons(x', cons(y, xs)))=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true ---------------------------------------- (43) Obligation: Formula: x':sort[a33],xs:sort[a34],y:sort[a33].del'(max(cons(x', xs)), cons(x', cons(y, xs)))=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true ---------------------------------------- (44) Conditional Evaluation (EQUIVALENT) The formula could be reduced to the following new obligations by conditional evaluation: Formula: true=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=true Formula: x':sort[a33],xs:sort[a34],y:sort[a33].del'(max(cons(x', xs)), cons(y, xs))=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false ---------------------------------------- (45) Complex Obligation (AND) ---------------------------------------- (46) Obligation: Formula: true=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=true ---------------------------------------- (47) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (48) YES ---------------------------------------- (49) Obligation: Formula: x':sort[a33],xs:sort[a34],y:sort[a33].del'(max(cons(x', xs)), cons(y, xs))=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false ---------------------------------------- (50) Conditional Evaluation (EQUIVALENT) The formula could be reduced to the following new obligations by conditional evaluation: Formula: true=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false x':sort[a33],xs:sort[a34],y:sort[a33].equal_sort[a46](eq(max(cons(x', xs)), y), true_renamed)=true Formula: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), xs)=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false x':sort[a33],xs:sort[a34],y:sort[a33].equal_sort[a46](eq(max(cons(x', xs)), y), true_renamed)=false ---------------------------------------- (51) Complex Obligation (AND) ---------------------------------------- (52) Obligation: Formula: true=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false x':sort[a33],xs:sort[a34],y:sort[a33].equal_sort[a46](eq(max(cons(x', xs)), y), true_renamed)=true ---------------------------------------- (53) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (54) YES ---------------------------------------- (55) Obligation: Formula: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), xs)=true Hypotheses: x':sort[a33],xs:sort[a34].del'(max(cons(x', xs)), cons(x', xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false x':sort[a33],xs:sort[a34],y:sort[a33].equal_sort[a46](eq(max(cons(x', xs)), y), true_renamed)=false ---------------------------------------- (56) Hypothesis Lifting (EQUIVALENT) Formula could be generalised by hypothesis lifting to the following new obligation: Formula: x':sort[a33],xs:sort[a34].(del'(max(cons(x', xs)), cons(x', xs))=true->del'(max(cons(x', xs)), xs)=true) Hypotheses: x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false x':sort[a33],xs:sort[a34],y:sort[a33].equal_sort[a46](eq(max(cons(x', xs)), y), true_renamed)=false ---------------------------------------- (57) Obligation: Formula: x':sort[a33],xs:sort[a34].(del'(max(cons(x', xs)), cons(x', xs))=true->del'(max(cons(x', xs)), xs)=true) Hypotheses: x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false x':sort[a33],xs:sort[a34],y:sort[a33].equal_sort[a46](eq(max(cons(x', xs)), y), true_renamed)=false ---------------------------------------- (58) Conditional Evaluation (EQUIVALENT) The formula could be reduced to the following new obligations by conditional evaluation: Formula: x':sort[a33],xs:sort[a34].(del'(max(cons(x', xs)), xs)=true->del'(max(cons(x', xs)), xs)=true) Hypotheses: x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false x':sort[a33],xs:sort[a34],y:sort[a33].equal_sort[a46](eq(max(cons(x', xs)), y), true_renamed)=false ---------------------------------------- (59) Obligation: Formula: x':sort[a33],xs:sort[a34].(del'(max(cons(x', xs)), xs)=true->del'(max(cons(x', xs)), xs)=true) Hypotheses: x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=true x':sort[a33],xs:sort[a34].equal_sort[a46](eq(max(cons(x', xs)), x'), true_renamed)=false x':sort[a33],xs:sort[a34],y:sort[a33].equal_sort[a46](eq(max(cons(x', xs)), y), true_renamed)=false ---------------------------------------- (60) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (61) YES ---------------------------------------- (62) Obligation: Formula: x':sort[a33],y:sort[a33],xs:sort[a34].(~(cons(x', cons(y, xs))=nil)->del'(max(cons(x', cons(y, xs))), cons(x', cons(y, xs)))=true) Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false ---------------------------------------- (63) Symbolic evaluation (EQUIVALENT) Could be shown by simple symbolic evaluation. ---------------------------------------- (64) Obligation: Formula: x':sort[a33],y:sort[a33],xs:sort[a34].del'(max(cons(x', cons(y, xs))), cons(x', cons(y, xs)))=true Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false ---------------------------------------- (65) Conditional Evaluation (EQUIVALENT) The formula could be reduced to the following new obligations by conditional evaluation: Formula: y:sort[a33],xs:sort[a34],x':sort[a33].del'(max(cons(y, xs)), cons(x', cons(y, xs)))=true Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false ---------------------------------------- (66) Obligation: Formula: y:sort[a33],xs:sort[a34],x':sort[a33].del'(max(cons(y, xs)), cons(x', cons(y, xs)))=true Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false ---------------------------------------- (67) Conditional Evaluation (EQUIVALENT) The formula could be reduced to the following new obligations by conditional evaluation: Formula: true=true Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false y:sort[a33],xs:sort[a34],x':sort[a33].equal_sort[a46](eq(max(cons(y, xs)), x'), true_renamed)=true Formula: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false y:sort[a33],xs:sort[a34],x':sort[a33].equal_sort[a46](eq(max(cons(y, xs)), x'), true_renamed)=false ---------------------------------------- (68) Complex Obligation (AND) ---------------------------------------- (69) Obligation: Formula: true=true Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false y:sort[a33],xs:sort[a34],x':sort[a33].equal_sort[a46](eq(max(cons(y, xs)), x'), true_renamed)=true ---------------------------------------- (70) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (71) YES ---------------------------------------- (72) Obligation: Formula: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true Hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true x':sort[a33],y:sort[a33].equal_sort[a46](ge(x', y), true_renamed)=false y:sort[a33],xs:sort[a34],x':sort[a33].equal_sort[a46](eq(max(cons(y, xs)), x'), true_renamed)=false ---------------------------------------- (73) Symbolic evaluation under hypothesis (EQUIVALENT) Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses: y:sort[a33],xs:sort[a34].del'(max(cons(y, xs)), cons(y, xs))=true ---------------------------------------- (74) YES ---------------------------------------- (53) Complex Obligation (AND) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: SORT(cons(x0, x1)) -> IF3(false, cons(x0, x1)) The TRS R consists of the following rules: max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x, cons(y, xs))) -> if1(ge(x, y), x, y, xs) if1(true, x, y, xs) -> max(cons(x, xs)) if1(false, x, y, xs) -> max(cons(y, xs)) del(x, nil) -> nil del(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if2(true, x, y, xs) -> xs if2(false, x, y, xs) -> cons(y, del(x, xs)) ge(x, 0) -> true ge(0, s(x)) -> false ge(s(x), s(y)) -> ge(x, y) The set Q consists of the following terms: max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true, x0, x1, x2) if1(false, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true, x0, x1, x2) if2(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (56) TRUE ---------------------------------------- (57) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true Q is empty. ---------------------------------------- (58) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (59) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) ---------------------------------------- (60) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: DEL'(x4, cons(y1, xs1)) -> IF2'(eq(x4, y1), x4, y1, xs1) DEL'(x4, cons(y1, xs1)) -> EQ(x4, y1) IF2'(false_renamed, x8, y5, xs3) -> DEL'(x8, xs3) MAX(cons(x', cons(y, xs))) -> IF1(ge(x', y), x', y, xs) MAX(cons(x', cons(y, xs))) -> GE(x', y) IF1(true_renamed, x'', y', xs') -> MAX(cons(x'', xs')) IF1(false_renamed, x2, y'', xs'') -> MAX(cons(y'', xs'')) DEL(x4, cons(y1, xs1)) -> IF2(eq(x4, y1), x4, y1, xs1) DEL(x4, cons(y1, xs1)) -> EQ(x4, y1) EQ(s(x6), s(y3)) -> EQ(x6, y3) IF2(false_renamed, x8, y5, xs3) -> DEL(x8, xs3) GE(s(x11), s(y6)) -> GE(x11, y6) EQUAL_SORT[A33](s(v55), s(v56)) -> EQUAL_SORT[A33](v55, v56) EQUAL_SORT[A34](cons(v59, v60), cons(v61, v62)) -> AND(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) EQUAL_SORT[A34](cons(v59, v60), cons(v61, v62)) -> EQUAL_SORT[A33](v59, v61) EQUAL_SORT[A34](cons(v59, v60), cons(v61, v62)) -> EQUAL_SORT[A34](v60, v62) The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 5 less nodes. ---------------------------------------- (63) Complex Obligation (AND) ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: EQUAL_SORT[A33](s(v55), s(v56)) -> EQUAL_SORT[A33](v55, v56) The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (66) Obligation: Q DP problem: The TRS P consists of the following rules: EQUAL_SORT[A33](s(v55), s(v56)) -> EQUAL_SORT[A33](v55, v56) R is empty. The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (67) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) ---------------------------------------- (68) Obligation: Q DP problem: The TRS P consists of the following rules: EQUAL_SORT[A33](s(v55), s(v56)) -> EQUAL_SORT[A33](v55, v56) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (69) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQUAL_SORT[A33](s(v55), s(v56)) -> EQUAL_SORT[A33](v55, v56) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (70) YES ---------------------------------------- (71) Obligation: Q DP problem: The TRS P consists of the following rules: EQUAL_SORT[A34](cons(v59, v60), cons(v61, v62)) -> EQUAL_SORT[A34](v60, v62) The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (72) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (73) Obligation: Q DP problem: The TRS P consists of the following rules: EQUAL_SORT[A34](cons(v59, v60), cons(v61, v62)) -> EQUAL_SORT[A34](v60, v62) R is empty. The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (74) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) ---------------------------------------- (75) Obligation: Q DP problem: The TRS P consists of the following rules: EQUAL_SORT[A34](cons(v59, v60), cons(v61, v62)) -> EQUAL_SORT[A34](v60, v62) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (76) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQUAL_SORT[A34](cons(v59, v60), cons(v61, v62)) -> EQUAL_SORT[A34](v60, v62) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (77) YES ---------------------------------------- (78) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x11), s(y6)) -> GE(x11, y6) The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (79) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (80) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x11), s(y6)) -> GE(x11, y6) R is empty. The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (81) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) ---------------------------------------- (82) Obligation: Q DP problem: The TRS P consists of the following rules: GE(s(x11), s(y6)) -> GE(x11, y6) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (83) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *GE(s(x11), s(y6)) -> GE(x11, y6) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (84) YES ---------------------------------------- (85) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x6), s(y3)) -> EQ(x6, y3) The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (86) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (87) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x6), s(y3)) -> EQ(x6, y3) R is empty. The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (88) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) ---------------------------------------- (89) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x6), s(y3)) -> EQ(x6, y3) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (90) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x6), s(y3)) -> EQ(x6, y3) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (91) YES ---------------------------------------- (92) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false_renamed, x8, y5, xs3) -> DEL(x8, xs3) DEL(x4, cons(y1, xs1)) -> IF2(eq(x4, y1), x4, y1, xs1) The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (93) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (94) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false_renamed, x8, y5, xs3) -> DEL(x8, xs3) DEL(x4, cons(y1, xs1)) -> IF2(eq(x4, y1), x4, y1, xs1) The TRS R consists of the following rules: eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (95) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) ---------------------------------------- (96) Obligation: Q DP problem: The TRS P consists of the following rules: IF2(false_renamed, x8, y5, xs3) -> DEL(x8, xs3) DEL(x4, cons(y1, xs1)) -> IF2(eq(x4, y1), x4, y1, xs1) The TRS R consists of the following rules: eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (97) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DEL(x4, cons(y1, xs1)) -> IF2(eq(x4, y1), x4, y1, xs1) The graph contains the following edges 1 >= 2, 2 > 3, 2 > 4 *IF2(false_renamed, x8, y5, xs3) -> DEL(x8, xs3) The graph contains the following edges 2 >= 1, 4 >= 2 ---------------------------------------- (98) YES ---------------------------------------- (99) Obligation: Q DP problem: The TRS P consists of the following rules: IF1(true_renamed, x'', y', xs') -> MAX(cons(x'', xs')) MAX(cons(x', cons(y, xs))) -> IF1(ge(x', y), x', y, xs) IF1(false_renamed, x2, y'', xs'') -> MAX(cons(y'', xs'')) The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (100) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (101) Obligation: Q DP problem: The TRS P consists of the following rules: IF1(true_renamed, x'', y', xs') -> MAX(cons(x'', xs')) MAX(cons(x', cons(y, xs))) -> IF1(ge(x', y), x', y, xs) IF1(false_renamed, x2, y'', xs'') -> MAX(cons(y'', xs'')) The TRS R consists of the following rules: ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (102) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) ---------------------------------------- (103) Obligation: Q DP problem: The TRS P consists of the following rules: IF1(true_renamed, x'', y', xs') -> MAX(cons(x'', xs')) MAX(cons(x', cons(y, xs))) -> IF1(ge(x', y), x', y, xs) IF1(false_renamed, x2, y'', xs'') -> MAX(cons(y'', xs'')) The TRS R consists of the following rules: ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) The set Q consists of the following terms: ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (104) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF1(true_renamed, x'', y', xs') -> MAX(cons(x'', xs')) MAX(cons(x', cons(y, xs))) -> IF1(ge(x', y), x', y, xs) IF1(false_renamed, x2, y'', xs'') -> MAX(cons(y'', xs'')) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. IF1(x1, x2, x3, x4) = IF1(x4) MAX(x1) = x1 cons(x1, x2) = cons(x2) Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 IF1_1=3 cons_1=2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (105) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) The set Q consists of the following terms: ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (106) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (107) YES ---------------------------------------- (108) Obligation: Q DP problem: The TRS P consists of the following rules: IF2'(false_renamed, x8, y5, xs3) -> DEL'(x8, xs3) DEL'(x4, cons(y1, xs1)) -> IF2'(eq(x4, y1), x4, y1, xs1) The TRS R consists of the following rules: del'(x3, nil) -> false del'(x4, cons(y1, xs1)) -> if2'(eq(x4, y1), x4, y1, xs1) if2'(true_renamed, x7, y4, xs2) -> true if2'(false_renamed, x8, y5, xs3) -> del'(x8, xs3) max(nil) -> 0 max(cons(x, nil)) -> x max(cons(x', cons(y, xs))) -> if1(ge(x', y), x', y, xs) if1(true_renamed, x'', y', xs') -> max(cons(x'', xs')) if1(false_renamed, x2, y'', xs'') -> max(cons(y'', xs'')) del(x3, nil) -> nil del(x4, cons(y1, xs1)) -> if2(eq(x4, y1), x4, y1, xs1) eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) if2(true_renamed, x7, y4, xs2) -> xs2 if2(false_renamed, x8, y5, xs3) -> cons(y5, del(x8, xs3)) ge(x9, 0) -> true_renamed ge(0, s(x10)) -> false_renamed ge(s(x11), s(y6)) -> ge(x11, y6) equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a33](0, 0) -> true equal_sort[a33](0, s(v54)) -> false equal_sort[a33](s(v55), 0) -> false equal_sort[a33](s(v55), s(v56)) -> equal_sort[a33](v55, v56) equal_sort[a34](nil, nil) -> true equal_sort[a34](nil, cons(v57, v58)) -> false equal_sort[a34](cons(v59, v60), nil) -> false equal_sort[a34](cons(v59, v60), cons(v61, v62)) -> and(equal_sort[a33](v59, v61), equal_sort[a34](v60, v62)) equal_sort[a46](true_renamed, true_renamed) -> true equal_sort[a46](true_renamed, false_renamed) -> false equal_sort[a46](false_renamed, true_renamed) -> false equal_sort[a46](false_renamed, false_renamed) -> true equal_sort[a63](witness_sort[a63], witness_sort[a63]) -> true The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (109) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (110) Obligation: Q DP problem: The TRS P consists of the following rules: IF2'(false_renamed, x8, y5, xs3) -> DEL'(x8, xs3) DEL'(x4, cons(y1, xs1)) -> IF2'(eq(x4, y1), x4, y1, xs1) The TRS R consists of the following rules: eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) The set Q consists of the following terms: del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (111) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. del'(x0, nil) del'(x0, cons(x1, x2)) if2'(true_renamed, x0, x1, x2) if2'(false_renamed, x0, x1, x2) max(nil) max(cons(x0, nil)) max(cons(x0, cons(x1, x2))) if1(true_renamed, x0, x1, x2) if1(false_renamed, x0, x1, x2) del(x0, nil) del(x0, cons(x1, x2)) if2(true_renamed, x0, x1, x2) if2(false_renamed, x0, x1, x2) ge(x0, 0) ge(0, s(x0)) ge(s(x0), s(x1)) equal_bool(true, false) equal_bool(false, true) equal_bool(true, true) equal_bool(false, false) and(true, x0) and(false, x0) or(true, x0) or(false, x0) not(false) not(true) isa_true(true) isa_true(false) isa_false(true) isa_false(false) equal_sort[a33](0, 0) equal_sort[a33](0, s(x0)) equal_sort[a33](s(x0), 0) equal_sort[a33](s(x0), s(x1)) equal_sort[a34](nil, nil) equal_sort[a34](nil, cons(x0, x1)) equal_sort[a34](cons(x0, x1), nil) equal_sort[a34](cons(x0, x1), cons(x2, x3)) equal_sort[a46](true_renamed, true_renamed) equal_sort[a46](true_renamed, false_renamed) equal_sort[a46](false_renamed, true_renamed) equal_sort[a46](false_renamed, false_renamed) equal_sort[a63](witness_sort[a63], witness_sort[a63]) ---------------------------------------- (112) Obligation: Q DP problem: The TRS P consists of the following rules: IF2'(false_renamed, x8, y5, xs3) -> DEL'(x8, xs3) DEL'(x4, cons(y1, xs1)) -> IF2'(eq(x4, y1), x4, y1, xs1) The TRS R consists of the following rules: eq(0, 0) -> true_renamed eq(0, s(y2)) -> false_renamed eq(s(x5), 0) -> false_renamed eq(s(x6), s(y3)) -> eq(x6, y3) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (113) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DEL'(x4, cons(y1, xs1)) -> IF2'(eq(x4, y1), x4, y1, xs1) The graph contains the following edges 1 >= 2, 2 > 3, 2 > 4 *IF2'(false_renamed, x8, y5, xs3) -> DEL'(x8, xs3) The graph contains the following edges 2 >= 1, 4 >= 2 ---------------------------------------- (114) YES