/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 17 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) MNOCProof [EQUIVALENT, 0 ms] (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) MRRProof [EQUIVALENT, 0 ms] (13) QDP (14) PisEmptyProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) MNOCProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(s(x)), y) -> PLUS(x, s(y)) PLUS(x, s(s(y))) -> PLUS(s(x), y) ACK(s(x), 0) -> ACK(x, s(0)) ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y))) ACK(s(x), s(y)) -> PLUS(y, ack(s(x), y)) ACK(s(x), s(y)) -> ACK(s(x), y) The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(x, s(s(y))) -> PLUS(s(x), y) PLUS(s(s(x)), y) -> PLUS(x, s(y)) The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(x, s(s(y))) -> PLUS(s(x), y) PLUS(s(s(x)), y) -> PLUS(x, s(y)) The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) The set Q consists of the following terms: plus(s(s(x0)), x1) plus(x0, s(s(x1))) plus(s(0), x0) plus(0, x0) ack(0, x0) ack(s(x0), 0) ack(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(x, s(s(y))) -> PLUS(s(x), y) PLUS(s(s(x)), y) -> PLUS(x, s(y)) R is empty. The set Q consists of the following terms: plus(s(s(x0)), x1) plus(x0, s(s(x1))) plus(s(0), x0) plus(0, x0) ack(0, x0) ack(s(x0), 0) ack(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(s(s(x0)), x1) plus(x0, s(s(x1))) plus(s(0), x0) plus(0, x0) ack(0, x0) ack(s(x0), 0) ack(s(x0), s(x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(x, s(s(y))) -> PLUS(s(x), y) PLUS(s(s(x)), y) -> PLUS(x, s(y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: PLUS(x, s(s(y))) -> PLUS(s(x), y) PLUS(s(s(x)), y) -> PLUS(x, s(y)) Used ordering: Knuth-Bendix order [KBO] with precedence:PLUS_2 > s_1 and weight map: s_1=1 PLUS_2=0 The variable weight is 1 ---------------------------------------- (13) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y))) ACK(s(x), 0) -> ACK(x, s(0)) ACK(s(x), s(y)) -> ACK(s(x), y) The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y))) ACK(s(x), 0) -> ACK(x, s(0)) ACK(s(x), s(y)) -> ACK(s(x), y) The TRS R consists of the following rules: plus(s(s(x)), y) -> s(plus(x, s(y))) plus(x, s(s(y))) -> s(plus(s(x), y)) plus(s(0), y) -> s(y) plus(0, y) -> y ack(0, y) -> s(y) ack(s(x), 0) -> ack(x, s(0)) ack(s(x), s(y)) -> ack(x, plus(y, ack(s(x), y))) The set Q consists of the following terms: plus(s(s(x0)), x1) plus(x0, s(s(x1))) plus(s(0), x0) plus(0, x0) ack(0, x0) ack(s(x0), 0) ack(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACK(s(x), 0) -> ACK(x, s(0)) The graph contains the following edges 1 > 1 *ACK(s(x), s(y)) -> ACK(x, plus(y, ack(s(x), y))) The graph contains the following edges 1 > 1 *ACK(s(x), s(y)) -> ACK(s(x), y) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (20) YES