/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- NO proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be disproven: (0) QTRS (1) AAECC Innermost [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 22 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) MNOCProof [EQUIVALENT, 0 ms] (23) QDP (24) NonLoopProof [COMPLETE, 1115 ms] (25) NO ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: add(true, x, xs) -> add(and(isNat(x), isList(xs)), x, Cons(x, xs)) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> true isNat(s(x)) -> isNat(x) isNat(0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false Q is empty. ---------------------------------------- (1) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is isList(Cons(x, xs)) -> isList(xs) isList(nil) -> true isNat(s(x)) -> isNat(x) isNat(0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The TRS R 2 is add(true, x, xs) -> add(and(isNat(x), isList(xs)), x, Cons(x, xs)) The signature Sigma is {add_3} ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: add(true, x, xs) -> add(and(isNat(x), isList(xs)), x, Cons(x, xs)) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> true isNat(s(x)) -> isNat(x) isNat(0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(true, x, xs) -> ADD(and(isNat(x), isList(xs)), x, Cons(x, xs)) ADD(true, x, xs) -> AND(isNat(x), isList(xs)) ADD(true, x, xs) -> ISNAT(x) ADD(true, x, xs) -> ISLIST(xs) ISLIST(Cons(x, xs)) -> ISLIST(xs) ISNAT(s(x)) -> ISNAT(x) The TRS R consists of the following rules: add(true, x, xs) -> add(and(isNat(x), isList(xs)), x, Cons(x, xs)) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> true isNat(s(x)) -> isNat(x) isNat(0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(s(x)) -> ISNAT(x) The TRS R consists of the following rules: add(true, x, xs) -> add(and(isNat(x), isList(xs)), x, Cons(x, xs)) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> true isNat(s(x)) -> isNat(x) isNat(0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(s(x)) -> ISNAT(x) R is empty. The set Q consists of the following terms: add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: ISNAT(s(x)) -> ISNAT(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ISNAT(s(x)) -> ISNAT(x) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: ISLIST(Cons(x, xs)) -> ISLIST(xs) The TRS R consists of the following rules: add(true, x, xs) -> add(and(isNat(x), isList(xs)), x, Cons(x, xs)) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> true isNat(s(x)) -> isNat(x) isNat(0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: ISLIST(Cons(x, xs)) -> ISLIST(xs) R is empty. The set Q consists of the following terms: add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: ISLIST(Cons(x, xs)) -> ISLIST(xs) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ISLIST(Cons(x, xs)) -> ISLIST(xs) The graph contains the following edges 1 > 1 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(true, x, xs) -> ADD(and(isNat(x), isList(xs)), x, Cons(x, xs)) The TRS R consists of the following rules: add(true, x, xs) -> add(and(isNat(x), isList(xs)), x, Cons(x, xs)) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> true isNat(s(x)) -> isNat(x) isNat(0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false The set Q consists of the following terms: add(true, x0, x1) isList(Cons(x0, x1)) isList(nil) isNat(s(x0)) isNat(0) and(true, true) and(false, x0) and(x0, false) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) MNOCProof (EQUIVALENT) We use the modular non-overlap check [FROCOS05] to decrease Q to the empty set. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(true, x, xs) -> ADD(and(isNat(x), isList(xs)), x, Cons(x, xs)) The TRS R consists of the following rules: add(true, x, xs) -> add(and(isNat(x), isList(xs)), x, Cons(x, xs)) isList(Cons(x, xs)) -> isList(xs) isList(nil) -> true isNat(s(x)) -> isNat(x) isNat(0) -> true and(true, true) -> true and(false, x) -> false and(x, false) -> false Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (24) NonLoopProof (COMPLETE) By Theorem 8 [NONLOOP] we deduce infiniteness of the QDP. We apply the theorem with m = 1, b = 1, σ' = [ ], and μ' = [ ] on the rule ADD(true, 0, Cons(0, zr1))[zr1 / Cons(0, zr1)]^n[zr1 / nil] -> ADD(true, 0, Cons(0, Cons(0, zr1)))[zr1 / Cons(0, zr1)]^n[zr1 / nil] This rule is correct for the QDP as the following derivation shows: ADD(true, 0, Cons(0, zr1))[zr1 / Cons(0, zr1)]^n[zr1 / nil] -> ADD(true, 0, Cons(0, Cons(0, zr1)))[zr1 / Cons(0, zr1)]^n[zr1 / nil] by Equivalence by Domain Renaming of the lhs with [zl0 / zr1] intermediate steps: Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) ADD(true, 0, Cons(x0, zl1))[zr1 / Cons(x0, zr1), zl1 / Cons(x0, zl1)]^n[zr1 / nil, zl1 / nil] -> ADD(true, 0, Cons(0, Cons(x0, zr1)))[zr1 / Cons(x0, zr1), zl1 / Cons(x0, zl1)]^n[zr1 / nil, zl1 / nil] by Narrowing at position: [0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) ADD(true, 0, Cons(x1, zl1))[zr1 / Cons(x1, zr1), zl1 / Cons(x1, zl1)]^n[zr1 / nil, zl1 / nil] -> ADD(and(true, true), 0, Cons(0, Cons(x1, zr1)))[zr1 / Cons(x1, zr1), zl1 / Cons(x1, zl1)]^n[zr1 / nil, zl1 / nil] by Narrowing at position: [0,0] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) ADD(true, x2, Cons(x0, zl1))[zr1 / Cons(x0, zr1), zl1 / Cons(x0, zl1)]^n[zr1 / nil, zl1 / nil] -> ADD(and(isNat(x2), true), x2, Cons(x2, Cons(x0, zr1)))[zr1 / Cons(x0, zr1), zl1 / Cons(x0, zl1)]^n[zr1 / nil, zl1 / nil] by Narrowing at position: [0,1] intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) - Instantiation - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) - Instantiation - Equiv DR (rhs) - Equiv DR (lhs) ADD(true, x1, Cons(y0, zs1))[zs1 / Cons(y0, zs1)]^n[zs1 / y1] -> ADD(and(isNat(x1), isList(y1)), x1, Cons(x1, Cons(y0, zs1)))[zs1 / Cons(y0, zs1)]^n[zs1 / y1] by Narrowing at position: [0,1] intermediate steps: Instantiate mu - Instantiate Sigma - Instantiation - Instantiation ADD(true, x, xs)[ ]^n[ ] -> ADD(and(isNat(x), isList(xs)), x, Cons(x, xs))[ ]^n[ ] by Rule from TRS P intermediate steps: Equiv IPS (rhs) - Equiv IPS (rhs) - Instantiation - Equiv DR (lhs) - Instantiation - Equiv DR (lhs) isList(Cons(x, xs))[xs / Cons(x, xs)]^n[ ] -> isList(xs)[ ]^n[ ] by PatternCreation I with delta: [ ], theta: [ ], sigma: [xs / Cons(x, xs)] isList(Cons(x, xs))[ ]^n[ ] -> isList(xs)[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) isList(nil)[ ]^n[ ] -> true[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) isNat(0)[ ]^n[ ] -> true[ ]^n[ ] by Rule from TRS R intermediate steps: Equiv IPS (rhs) - Equiv IPS (lhs) - Equiv IPS (rhs) - Equiv IPS (lhs) and(true, true)[ ]^n[ ] -> true[ ]^n[ ] by Rule from TRS R ---------------------------------------- (25) NO