/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 1 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) QDP (5) TransformationProof [EQUIVALENT, 0 ms] (6) QDP (7) DependencyGraphProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPOrderProof [EQUIVALENT, 120 ms] (10) QDP (11) QDPOrderProof [EQUIVALENT, 82 ms] (12) QDP (13) TransformationProof [EQUIVALENT, 0 ms] (14) QDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) QDP (17) TransformationProof [EQUIVALENT, 0 ms] (18) QDP (19) DependencyGraphProof [EQUIVALENT, 0 ms] (20) QDP (21) TransformationProof [EQUIVALENT, 0 ms] (22) QDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) QDP (25) TransformationProof [EQUIVALENT, 0 ms] (26) QDP (27) DependencyGraphProof [EQUIVALENT, 0 ms] (28) QDP (29) TransformationProof [EQUIVALENT, 0 ms] (30) QDP (31) TransformationProof [EQUIVALENT, 0 ms] (32) QDP (33) DependencyGraphProof [EQUIVALENT, 0 ms] (34) QDP (35) TransformationProof [EQUIVALENT, 9 ms] (36) QDP (37) DependencyGraphProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) QDP (43) QDPOrderProof [EQUIVALENT, 2034 ms] (44) QDP (45) QDPOrderProof [EQUIVALENT, 1405 ms] (46) QDP (47) DependencyGraphProof [EQUIVALENT, 0 ms] (48) AND (49) QDP (50) UsableRulesProof [EQUIVALENT, 0 ms] (51) QDP (52) QDPSizeChangeProof [EQUIVALENT, 0 ms] (53) YES (54) QDP (55) QDPOrderProof [EQUIVALENT, 1310 ms] (56) QDP (57) QDPOrderProof [EQUIVALENT, 762 ms] (58) QDP (59) QDPOrderProof [EQUIVALENT, 790 ms] (60) QDP (61) QDPOrderProof [EQUIVALENT, 592 ms] (62) QDP (63) DependencyGraphProof [EQUIVALENT, 0 ms] (64) QDP (65) QDPOrderProof [EQUIVALENT, 1527 ms] (66) QDP (67) DependencyGraphProof [EQUIVALENT, 0 ms] (68) QDP (69) UsableRulesProof [EQUIVALENT, 0 ms] (70) QDP (71) QDPSizeChangeProof [EQUIVALENT, 0 ms] (72) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: G(x) -> H(x, x) S(x) -> H(x, 0) S(x) -> H(0, x) F(g(x)) -> G(g(f(x))) F(g(x)) -> G(f(x)) F(g(x)) -> F(x) G(s(x)) -> S(s(g(x))) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) H(f(x), g(x)) -> F(s(x)) H(f(x), g(x)) -> S(x) S(0) -> F(0) S(s(0)) -> F(s(0)) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) F(s(s(x))) -> H(x, x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(g(f(x))) G(x) -> H(x, x) H(f(x), g(x)) -> S(x) S(s(0)) -> F(s(0)) F(g(x)) -> G(f(x)) G(s(x)) -> S(s(g(x))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(g(x)) -> F(x) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) F(s(s(x))) -> H(x, x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule S(s(0)) -> F(s(0)) at position [0] we obtained the following new rules [LPAR04]: (S(s(0)) -> F(h(0, 0)),S(s(0)) -> F(h(0, 0))) (S(s(0)) -> F(f(0)),S(s(0)) -> F(f(0))) ---------------------------------------- (6) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(g(f(x))) G(x) -> H(x, x) H(f(x), g(x)) -> S(x) F(g(x)) -> G(f(x)) G(s(x)) -> S(s(g(x))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(g(x)) -> F(x) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) F(s(s(x))) -> H(x, x) S(s(0)) -> F(h(0, 0)) S(s(0)) -> F(f(0)) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (7) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: F(g(x)) -> G(g(f(x))) G(x) -> H(x, x) H(f(x), g(x)) -> F(s(x)) F(g(x)) -> G(f(x)) G(s(x)) -> S(s(g(x))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(g(x)) -> F(x) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) F(s(s(x))) -> H(x, x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (9) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(g(x)) -> G(g(f(x))) F(g(x)) -> G(f(x)) F(g(x)) -> F(x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( F_1(x_1) ) = 2x_1 POL( G_1(x_1) ) = x_1 POL( H_2(x_1, x_2) ) = x_1 POL( S_1(x_1) ) = max{0, x_1 - 2} POL( h_2(x_1, x_2) ) = x_1 POL( f_1(x_1) ) = 2x_1 POL( g_1(x_1) ) = x_1 + 2 POL( s_1(x_1) ) = x_1 POL( 0 ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: G(x) -> H(x, x) H(f(x), g(x)) -> F(s(x)) G(s(x)) -> S(s(g(x))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) F(s(s(x))) -> H(x, x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. G(x) -> H(x, x) F(s(s(x))) -> H(x, x) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( F_1(x_1) ) = 2x_1 + 1 POL( G_1(x_1) ) = 2x_1 + 1 POL( H_2(x_1, x_2) ) = max{0, 2x_2 - 1} POL( S_1(x_1) ) = 1 POL( s_1(x_1) ) = x_1 POL( h_2(x_1, x_2) ) = x_1 POL( 0 ) = 0 POL( f_1(x_1) ) = 2x_1 POL( g_1(x_1) ) = x_1 + 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) G(s(x)) -> S(s(g(x))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule G(s(x)) -> S(s(g(x))) at position [0] we obtained the following new rules [LPAR04]: (G(s(y0)) -> S(h(g(y0), 0)),G(s(y0)) -> S(h(g(y0), 0))) (G(s(y0)) -> S(h(0, g(y0))),G(s(y0)) -> S(h(0, g(y0)))) (G(s(x0)) -> S(s(h(x0, x0))),G(s(x0)) -> S(s(h(x0, x0)))) (G(s(s(x0))) -> S(s(s(s(g(x0))))),G(s(s(x0))) -> S(s(s(s(g(x0)))))) ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(s(0))))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) G(s(y0)) -> S(h(g(y0), 0)) G(s(y0)) -> S(h(0, g(y0))) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(s(s(0))))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(s(s(s(0))))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(h(s(s(s(0))), 0)),F(s(s(0))) -> S(h(s(s(s(0))), 0))) (F(s(s(0))) -> S(h(0, s(s(s(0))))),F(s(s(0))) -> S(h(0, s(s(s(0)))))) (F(s(s(0))) -> S(s(h(s(s(0)), 0))),F(s(s(0))) -> S(s(h(s(s(0)), 0)))) (F(s(s(0))) -> S(s(h(0, s(s(0))))),F(s(s(0))) -> S(s(h(0, s(s(0)))))) (F(s(s(0))) -> S(s(s(h(s(0), 0)))),F(s(s(0))) -> S(s(s(h(s(0), 0))))) (F(s(s(0))) -> S(s(s(h(0, s(0))))),F(s(s(0))) -> S(s(s(h(0, s(0)))))) (F(s(s(0))) -> S(s(s(f(s(0))))),F(s(s(0))) -> S(s(s(f(s(0)))))) (F(s(s(0))) -> S(s(s(s(h(0, 0))))),F(s(s(0))) -> S(s(s(s(h(0, 0)))))) (F(s(s(0))) -> S(s(s(s(f(0))))),F(s(s(0))) -> S(s(s(s(f(0)))))) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(s(0)))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) H(f(x), g(x)) -> S(x) F(s(s(0))) -> S(h(s(s(s(0))), 0)) F(s(s(0))) -> S(h(0, s(s(s(0))))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(s(0)))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(s(s(0)))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(h(s(s(0)), 0)),F(s(s(0))) -> S(h(s(s(0)), 0))) (F(s(s(0))) -> S(h(0, s(s(0)))),F(s(s(0))) -> S(h(0, s(s(0))))) (F(s(s(0))) -> S(s(h(s(0), 0))),F(s(s(0))) -> S(s(h(s(0), 0)))) (F(s(s(0))) -> S(s(h(0, s(0)))),F(s(s(0))) -> S(s(h(0, s(0))))) (F(s(s(0))) -> S(s(f(s(0)))),F(s(s(0))) -> S(s(f(s(0))))) (F(s(s(0))) -> S(s(s(h(0, 0)))),F(s(s(0))) -> S(s(s(h(0, 0))))) (F(s(s(0))) -> S(s(s(f(0)))),F(s(s(0))) -> S(s(s(f(0))))) ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) H(f(x), g(x)) -> S(x) F(s(s(0))) -> S(h(s(s(0)), 0)) F(s(s(0))) -> S(h(0, s(s(0)))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (24) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(0))) -> S(s(s(0))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(s(0))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(h(s(0), 0)),F(s(s(0))) -> S(h(s(0), 0))) (F(s(s(0))) -> S(h(0, s(0))),F(s(s(0))) -> S(h(0, s(0)))) (F(s(s(0))) -> S(f(s(0))),F(s(s(0))) -> S(f(s(0)))) (F(s(s(0))) -> S(s(h(0, 0))),F(s(s(0))) -> S(s(h(0, 0)))) (F(s(s(0))) -> S(s(f(0))),F(s(s(0))) -> S(s(f(0)))) ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) H(f(x), g(x)) -> S(x) F(s(s(0))) -> S(h(s(0), 0)) F(s(s(0))) -> S(h(0, s(0))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(h(0, 0))) F(s(s(0))) -> S(s(f(0))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> S(g(x)) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(h(0, 0))) F(s(s(0))) -> S(s(f(0))) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule G(s(x)) -> S(g(x)) at position [0] we obtained the following new rules [LPAR04]: (G(s(x0)) -> S(h(x0, x0)),G(s(x0)) -> S(h(x0, x0))) (G(s(s(x0))) -> S(s(s(g(x0)))),G(s(s(x0))) -> S(s(s(g(x0))))) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(f(s(0))) F(s(s(0))) -> S(s(h(0, 0))) F(s(s(0))) -> S(s(f(0))) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) H(f(x), g(x)) -> S(x) G(s(x0)) -> S(h(x0, x0)) G(s(s(x0))) -> S(s(s(g(x0)))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(f(s(0))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(0),F(s(s(0))) -> S(0)) (F(s(s(0))) -> S(f(h(0, 0))),F(s(s(0))) -> S(f(h(0, 0)))) (F(s(s(0))) -> S(f(f(0))),F(s(s(0))) -> S(f(f(0)))) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(h(0, 0))) F(s(s(0))) -> S(s(f(0))) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) H(f(x), g(x)) -> S(x) G(s(x0)) -> S(h(x0, x0)) G(s(s(x0))) -> S(s(s(g(x0)))) F(s(s(0))) -> S(0) F(s(s(0))) -> S(f(h(0, 0))) F(s(s(0))) -> S(f(f(0))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) G(s(x0)) -> S(h(x0, x0)) G(s(s(x0))) -> S(s(s(g(x0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(h(0, 0))) F(s(s(0))) -> S(s(f(0))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(h(0, 0))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(h(h(0, 0), 0)),F(s(s(0))) -> S(h(h(0, 0), 0))) (F(s(s(0))) -> S(h(0, h(0, 0))),F(s(s(0))) -> S(h(0, h(0, 0)))) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) G(s(x0)) -> S(h(x0, x0)) G(s(s(x0))) -> S(s(s(g(x0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(f(0))) F(s(s(0))) -> S(h(h(0, 0), 0)) F(s(s(0))) -> S(h(0, h(0, 0))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) F(s(s(0))) -> S(s(f(0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) G(s(x0)) -> S(h(x0, x0)) G(s(s(x0))) -> S(s(s(g(x0)))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule F(s(s(0))) -> S(s(f(0))) at position [0] we obtained the following new rules [LPAR04]: (F(s(s(0))) -> S(h(f(0), 0)),F(s(s(0))) -> S(h(f(0), 0))) (F(s(s(0))) -> S(h(0, f(0))),F(s(s(0))) -> S(h(0, f(0)))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) G(s(s(x0))) -> S(s(s(s(g(x0))))) G(s(x0)) -> S(h(x0, x0)) G(s(s(x0))) -> S(s(s(g(x0)))) H(f(x), g(x)) -> S(x) F(s(s(0))) -> S(h(f(0), 0)) F(s(s(0))) -> S(h(0, f(0))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(s(x0))) -> S(s(s(s(g(x0))))) G(s(x0)) -> S(h(x0, x0)) G(s(s(x0))) -> S(s(s(g(x0)))) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. G(s(s(x0))) -> S(s(s(s(g(x0))))) G(s(s(x0))) -> S(s(s(g(x0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(H(x_1, x_2)) = [[0A]] + [[0A, 1A, 0A]] * x_1 + [[0A, 0A, 0A]] * x_2 >>> <<< POL(f(x_1)) = [[-I], [-I], [0A]] + [[0A, 0A, 0A], [-I, 0A, -I], [-I, 0A, -I]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, -I], [-I, 0A, -I], [-I, 0A, 0A]] * x_1 >>> <<< POL(F(x_1)) = [[0A]] + [[0A, 1A, 0A]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [-I], [-I]] + [[0A, 0A, 0A], [-I, 0A, -I], [0A, 0A, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [-I], [-I]] + [[0A, 0A, -I], [-I, 0A, -I], [-I, 0A, -I]] * x_1 + [[0A, 0A, -I], [-I, -I, -I], [-I, 0A, -I]] * x_2 >>> <<< POL(S(x_1)) = [[0A]] + [[-I, -I, -I]] * x_1 >>> <<< POL(0) = [[0A], [-I], [0A]] >>> <<< POL(G(x_1)) = [[0A]] + [[0A, -I, 1A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> G(x) G(s(x0)) -> S(s(h(x0, x0))) G(s(x0)) -> S(h(x0, x0)) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. G(s(x0)) -> S(s(h(x0, x0))) G(s(x0)) -> S(h(x0, x0)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(H(x_1, x_2)) = [[0A]] + [[-I, -I, -I]] * x_1 + [[-I, 0A, -I]] * x_2 >>> <<< POL(f(x_1)) = [[0A], [0A], [0A]] + [[-I, -I, 0A], [0A, 0A, 0A], [-I, -I, 0A]] * x_1 >>> <<< POL(g(x_1)) = [[1A], [0A], [1A]] + [[0A, 0A, -I], [0A, 0A, -I], [0A, 0A, 0A]] * x_1 >>> <<< POL(F(x_1)) = [[0A]] + [[0A, -I, -I]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [1A], [0A]] + [[0A, -I, -I], [0A, 0A, -I], [-I, -I, -I]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [0A], [0A]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 + [[-I, -I, -I], [0A, -I, -I], [-I, -I, -I]] * x_2 >>> <<< POL(S(x_1)) = [[0A]] + [[0A, -I, -I]] * x_1 >>> <<< POL(0) = [[0A], [0A], [0A]] >>> <<< POL(G(x_1)) = [[0A]] + [[0A, 0A, -I]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> S(x) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(x))) -> F(x) F(s(s(x))) -> G(h(x, x)) G(s(x)) -> G(x) F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (48) Complex Obligation (AND) ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: G(s(x)) -> G(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *G(s(x)) -> G(x) The graph contains the following edges 1 > 1 ---------------------------------------- (53) YES ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(0))) -> S(s(h(s(s(0)), 0))) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) F(s(s(0))) -> S(s(s(f(0)))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(h(s(s(0)), 0))) F(s(s(0))) -> S(s(h(0, s(s(0))))) F(s(s(0))) -> S(s(s(h(s(0), 0)))) F(s(s(0))) -> S(s(s(h(0, s(0))))) F(s(s(0))) -> S(s(s(s(h(0, 0))))) F(s(s(0))) -> S(s(h(s(0), 0))) F(s(s(0))) -> S(s(h(0, s(0)))) F(s(s(0))) -> S(s(s(h(0, 0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(F(x_1)) = [[0A]] + [[0A, -I, 0A]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, -I], [0A, 0A, -I], [0A, 0A, 0A]] * x_1 >>> <<< POL(H(x_1, x_2)) = [[0A]] + [[0A, 0A, 0A]] * x_1 + [[0A, 0A, 0A]] * x_2 >>> <<< POL(f(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, -I], [0A, 0A, -I], [0A, 0A, 0A]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [0A], [-I]] + [[0A, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [0A], [-I]] + [[0A, 0A, -I], [0A, 0A, -I], [0A, -I, -I]] * x_1 + [[0A, 0A, -I], [0A, 0A, -I], [0A, -I, -I]] * x_2 >>> <<< POL(0) = [[0A], [0A], [1A]] >>> <<< POL(S(x_1)) = [[0A]] + [[0A, 0A, 0A]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(f(0))))) F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(f(0)))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(f(s(0)))) F(s(s(0))) -> S(s(s(f(0)))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(F(x_1)) = [[0A]] + [[-I, 0A, 0A]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [0A], [0A]] + [[-I, -I, -I], [0A, -I, 0A], [0A, 0A, -I]] * x_1 >>> <<< POL(H(x_1, x_2)) = [[0A]] + [[0A, 0A, 0A]] * x_1 + [[-I, -I, -I]] * x_2 >>> <<< POL(f(x_1)) = [[0A], [0A], [0A]] + [[0A, -I, -I], [0A, -I, 0A], [0A, 0A, -I]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [0A], [0A]] + [[0A, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [0A], [0A]] + [[-I, -I, -I], [0A, -I, -I], [-I, -I, -I]] * x_1 + [[-I, -I, -I], [0A, -I, -I], [0A, -I, -I]] * x_2 >>> <<< POL(S(x_1)) = [[0A]] + [[-I, 0A, -I]] * x_1 >>> <<< POL(0) = [[0A], [1A], [0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(f(s(0))))) F(s(s(0))) -> S(s(s(s(f(0))))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(0))) -> S(s(s(s(f(0))))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(F(x_1)) = [[0A]] + [[-I, 0A, 1A]] * x_1 >>> <<< POL(s(x_1)) = [[0A], [-I], [-I]] + [[0A, -I, 0A], [-I, 0A, 0A], [-I, 0A, -I]] * x_1 >>> <<< POL(H(x_1, x_2)) = [[0A]] + [[0A, -I, -I]] * x_1 + [[0A, 1A, 0A]] * x_2 >>> <<< POL(f(x_1)) = [[0A], [-I], [-I]] + [[-I, -I, 0A], [-I, 0A, -I], [-I, 0A, -I]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [-I], [-I]] + [[-I, 0A, 0A], [-I, 0A, 0A], [-I, 0A, -I]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [-I], [-I]] + [[-I, -I, 0A], [-I, -I, -I], [-I, 0A, -I]] * x_1 + [[-I, -I, 0A], [-I, 0A, -I], [-I, 0A, -I]] * x_2 >>> <<< POL(S(x_1)) = [[0A]] + [[-I, -I, 1A]] * x_1 >>> <<< POL(0) = [[0A], [-I], [0A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) F(s(s(0))) -> S(s(s(f(s(0))))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. S(s(s(s(s(s(s(0))))))) -> F(s(s(0))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(F(x_1)) = [[0A]] + [[-I, 0A, -I]] * x_1 >>> <<< POL(s(x_1)) = [[1A], [0A], [0A]] + [[-I, 0A, 0A], [-I, -I, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(H(x_1, x_2)) = [[0A]] + [[-I, 0A, -I]] * x_1 + [[0A, 0A, 0A]] * x_2 >>> <<< POL(f(x_1)) = [[0A], [0A], [0A]] + [[-I, 0A, 0A], [-I, 0A, 0A], [-I, 0A, 0A]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [0A], [-I]] + [[0A, 0A, 0A], [0A, 0A, 0A], [0A, 0A, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [0A], [-I]] + [[-I, 0A, 0A], [-I, -I, 0A], [0A, 0A, 0A]] * x_1 + [[-I, 0A, 0A], [-I, -I, 0A], [0A, 0A, 0A]] * x_2 >>> <<< POL(S(x_1)) = [[0A]] + [[-I, 0A, -I]] * x_1 >>> <<< POL(0) = [[0A], [-I], [-I]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> H(f(x), g(h(x, x))) H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) F(s(s(0))) -> S(s(s(f(s(0))))) H(f(x), g(x)) -> S(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> H(f(x), g(h(x, x))) F(s(s(x))) -> F(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(s(s(x))) -> H(f(x), g(h(x, x))) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] with arctic natural numbers [ARCTIC]: <<< POL(H(x_1, x_2)) = [[0A]] + [[-I, 0A, -I]] * x_1 + [[0A, -I, -I]] * x_2 >>> <<< POL(f(x_1)) = [[1A], [-I], [1A]] + [[-I, 1A, -I], [-I, 0A, -I], [-I, 1A, -I]] * x_1 >>> <<< POL(g(x_1)) = [[0A], [1A], [2A]] + [[0A, 1A, 0A], [-I, 0A, -I], [-I, 0A, 0A]] * x_1 >>> <<< POL(F(x_1)) = [[0A]] + [[-I, 1A, 0A]] * x_1 >>> <<< POL(s(x_1)) = [[1A], [-I], [0A]] + [[-I, 0A, -I], [-I, -I, -I], [0A, 1A, 0A]] * x_1 >>> <<< POL(h(x_1, x_2)) = [[0A], [-I], [0A]] + [[-I, -I, -I], [-I, -I, -I], [-I, -I, -I]] * x_1 + [[-I, 0A, -I], [-I, -I, -I], [-I, 0A, -I]] * x_2 >>> <<< POL(0) = [[0A], [-I], [1A]] >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: s(x) -> h(x, 0) s(x) -> h(0, x) s(0) -> f(0) h(f(x), g(x)) -> f(s(x)) f(g(x)) -> g(g(f(x))) g(x) -> h(x, x) g(s(x)) -> s(s(g(x))) s(s(0)) -> f(s(0)) f(s(s(0))) -> s(s(s(s(s(0))))) s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(x))) -> h(f(x), g(h(x, x))) f(s(0)) -> 0 ---------------------------------------- (66) Obligation: Q DP problem: The TRS P consists of the following rules: H(f(x), g(x)) -> F(s(x)) F(s(s(x))) -> F(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (67) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (68) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> F(x) The TRS R consists of the following rules: g(x) -> h(x, x) s(x) -> h(x, 0) s(x) -> h(0, x) f(g(x)) -> g(g(f(x))) g(s(x)) -> s(s(g(x))) h(f(x), g(x)) -> f(s(x)) s(0) -> f(0) s(s(0)) -> f(s(0)) f(s(0)) -> 0 s(s(s(s(s(s(s(0))))))) -> f(s(s(0))) f(s(s(0))) -> s(s(s(s(s(0))))) f(s(s(x))) -> h(f(x), g(h(x, x))) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (69) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (70) Obligation: Q DP problem: The TRS P consists of the following rules: F(s(s(x))) -> F(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (71) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *F(s(s(x))) -> F(x) The graph contains the following edges 1 > 1 ---------------------------------------- (72) YES