/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) TransformationProof [EQUIVALENT, 0 ms] (34) QDP (35) TransformationProof [EQUIVALENT, 0 ms] (36) QDP (37) TransformationProof [EQUIVALENT, 0 ms] (38) QDP (39) UsableRulesProof [EQUIVALENT, 0 ms] (40) QDP (41) QReductionProof [EQUIVALENT, 0 ms] (42) QDP (43) Induction-Processor [SOUND, 2 ms] (44) AND (45) QDP (46) PisEmptyProof [EQUIVALENT, 0 ms] (47) YES (48) QTRS (49) QTRSRRRProof [EQUIVALENT, 48 ms] (50) QTRS (51) QTRSRRRProof [EQUIVALENT, 0 ms] (52) QTRS (53) RisEmptyProof [EQUIVALENT, 0 ms] (54) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0 first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0 first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) DEL(x, cons(y, xs)) -> IF(eq(x, y), x, y, xs) DEL(x, cons(y, xs)) -> EQ(x, y) IF(false, x, y, xs) -> DEL(x, xs) EQ(s(x), s(y)) -> EQ(x, y) DOUBLELIST(cons(x, xs)) -> DOUBLE(x) DOUBLELIST(cons(x, xs)) -> DOUBLELIST(del(first(cons(x, xs)), cons(x, xs))) DOUBLELIST(cons(x, xs)) -> DEL(first(cons(x, xs)), cons(x, xs)) DOUBLELIST(cons(x, xs)) -> FIRST(cons(x, xs)) The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0 first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0 first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x), s(y)) -> EQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, xs) -> DEL(x, xs) DEL(x, cons(y, xs)) -> IF(eq(x, y), x, y, xs) The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0 first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, xs) -> DEL(x, xs) DEL(x, cons(y, xs)) -> IF(eq(x, y), x, y, xs) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, xs) -> DEL(x, xs) DEL(x, cons(y, xs)) -> IF(eq(x, y), x, y, xs) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DEL(x, cons(y, xs)) -> IF(eq(x, y), x, y, xs) The graph contains the following edges 1 >= 2, 2 > 3, 2 > 4 *IF(false, x, y, xs) -> DEL(x, xs) The graph contains the following edges 2 >= 1, 4 >= 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0 first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) R is empty. The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLE(s(x)) -> DOUBLE(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *DOUBLE(s(x)) -> DOUBLE(x) The graph contains the following edges 1 > 1 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(del(first(cons(x, xs)), cons(x, xs))) The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) del(x, nil) -> nil del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) first(nil) -> 0 first(cons(x, xs)) -> x doublelist(nil) -> nil doublelist(cons(x, xs)) -> cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs)))) The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(del(first(cons(x, xs)), cons(x, xs))) The TRS R consists of the following rules: first(cons(x, xs)) -> x del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) del(x, nil) -> nil The set Q consists of the following terms: double(0) double(s(x0)) del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) doublelist(nil) doublelist(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. double(0) double(s(x0)) doublelist(nil) doublelist(cons(x0, x1)) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(del(first(cons(x, xs)), cons(x, xs))) The TRS R consists of the following rules: first(cons(x, xs)) -> x del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) del(x, nil) -> nil The set Q consists of the following terms: del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule DOUBLELIST(cons(x, xs)) -> DOUBLELIST(del(first(cons(x, xs)), cons(x, xs))) at position [0] we obtained the following new rules [LPAR04]: (DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(first(cons(x, xs)), x), first(cons(x, xs)), x, xs)),DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(first(cons(x, xs)), x), first(cons(x, xs)), x, xs))) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(first(cons(x, xs)), x), first(cons(x, xs)), x, xs)) The TRS R consists of the following rules: first(cons(x, xs)) -> x del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) del(x, nil) -> nil The set Q consists of the following terms: del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(first(cons(x, xs)), x), first(cons(x, xs)), x, xs)) at position [0,0,0] we obtained the following new rules [LPAR04]: (DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), first(cons(x, xs)), x, xs)),DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), first(cons(x, xs)), x, xs))) ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), first(cons(x, xs)), x, xs)) The TRS R consists of the following rules: first(cons(x, xs)) -> x del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) del(x, nil) -> nil The set Q consists of the following terms: del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), first(cons(x, xs)), x, xs)) at position [0,1] we obtained the following new rules [LPAR04]: (DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), x, x, xs)),DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), x, x, xs))) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), x, x, xs)) The TRS R consists of the following rules: first(cons(x, xs)) -> x del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) eq(0, 0) -> true eq(0, s(y)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) del(x, nil) -> nil The set Q consists of the following terms: del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), x, x, xs)) The TRS R consists of the following rules: eq(0, 0) -> true eq(s(x), s(y)) -> eq(x, y) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) del(x, nil) -> nil eq(0, s(y)) -> false eq(s(x), 0) -> false The set Q consists of the following terms: del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) first(nil) first(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. first(nil) first(cons(x0, x1)) ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), x, x, xs)) The TRS R consists of the following rules: eq(0, 0) -> true eq(s(x), s(y)) -> eq(x, y) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) del(x, nil) -> nil eq(0, s(y)) -> false eq(s(x), 0) -> false The set Q consists of the following terms: del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) Induction-Processor (SOUND) This DP could be deleted by the Induction-Processor: DOUBLELIST(cons(x, xs)) -> DOUBLELIST(if(eq(x, x), x, x, xs)) This order was computed: Polynomial interpretation [POLO]: POL(0) = 1 POL(DOUBLELIST(x_1)) = x_1 POL(cons(x_1, x_2)) = 1 + x_1 + x_2 POL(del(x_1, x_2)) = x_2 POL(eq(x_1, x_2)) = 1 + x_2 POL(false_renamed) = 1 POL(if(x_1, x_2, x_3, x_4)) = 1 + x_3 + x_4 POL(nil) = 1 POL(s(x_1)) = 1 + x_1 POL(true_renamed) = 1 At least one of these decreasing rules is always used after the deleted DP: if(true_renamed, x'', y', xs') -> xs' The following formula is valid: x:sort[a19],xs:sort[a4].if'(eq(x, x), x, x, xs)=true The transformed set: if'(true_renamed, x'', y', xs') -> true if'(false_renamed, x1, y'', xs'') -> del'(x1, xs'') del'(x2, cons(y1, xs1)) -> if'(eq(x2, y1), x2, y1, xs1) del'(x3, nil) -> false eq(0, 0) -> true_renamed eq(s(x'), s(y)) -> eq(x', y) if(true_renamed, x'', y', xs') -> xs' if(false_renamed, x1, y'', xs'') -> cons(y'', del(x1, xs'')) del(x2, cons(y1, xs1)) -> if(eq(x2, y1), x2, y1, xs1) del(x3, nil) -> nil eq(0, s(y2)) -> false_renamed eq(s(x4), 0) -> false_renamed equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a19](0, 0) -> true equal_sort[a19](0, s(v13)) -> false equal_sort[a19](s(v14), 0) -> false equal_sort[a19](s(v14), s(v15)) -> equal_sort[a19](v14, v15) equal_sort[a4](cons(v16, v17), cons(v18, v19)) -> and(equal_sort[a19](v16, v18), equal_sort[a4](v17, v19)) equal_sort[a4](cons(v16, v17), nil) -> false equal_sort[a4](nil, cons(v20, v21)) -> false equal_sort[a4](nil, nil) -> true equal_sort[a18](true_renamed, true_renamed) -> true equal_sort[a18](true_renamed, false_renamed) -> false equal_sort[a18](false_renamed, true_renamed) -> false equal_sort[a18](false_renamed, false_renamed) -> true equal_sort[a37](witness_sort[a37], witness_sort[a37]) -> true The proof given by the theorem prover: The following output was given by the internal theorem prover:proof of internal # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Partial correctness of the following Program [x, v13, v14, v15, v16, v17, v18, v19, v20, v21, x'', y', xs', x1, y'', y1, xs1, x3, x2, x', y, y2, x4] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a19](0, 0) -> true equal_sort[a19](0, s(v13)) -> false equal_sort[a19](s(v14), 0) -> false equal_sort[a19](s(v14), s(v15)) -> equal_sort[a19](v14, v15) equal_sort[a4](cons(v16, v17), cons(v18, v19)) -> equal_sort[a19](v16, v18) and equal_sort[a4](v17, v19) equal_sort[a4](cons(v16, v17), nil) -> false equal_sort[a4](nil, cons(v20, v21)) -> false equal_sort[a4](nil, nil) -> true equal_sort[a18](true_renamed, true_renamed) -> true equal_sort[a18](true_renamed, false_renamed) -> false equal_sort[a18](false_renamed, true_renamed) -> false equal_sort[a18](false_renamed, false_renamed) -> true equal_sort[a37](witness_sort[a37], witness_sort[a37]) -> true if'(true_renamed, x'', y', xs') -> true if'(false_renamed, x1, y'', cons(y1, xs1)) -> if'(eq(x1, y1), x1, y1, xs1) if'(false_renamed, x1, y'', nil) -> false del'(x3, nil) -> false equal_sort[a18](eq(x2, y1), true_renamed) -> true | del'(x2, cons(y1, xs1)) -> true equal_sort[a18](eq(x2, y1), true_renamed) -> false | del'(x2, cons(y1, xs1)) -> del'(x2, xs1) eq(0, 0) -> true_renamed eq(s(x'), s(y)) -> eq(x', y) eq(0, s(y2)) -> false_renamed eq(s(x4), 0) -> false_renamed if(true_renamed, x'', y', xs') -> xs' if(false_renamed, x1, y'', cons(y1, xs1)) -> cons(y'', if(eq(x1, y1), x1, y1, xs1)) if(false_renamed, x1, y'', nil) -> cons(y'', nil) del(x3, nil) -> nil equal_sort[a18](eq(x2, y1), true_renamed) -> true | del(x2, cons(y1, xs1)) -> xs1 equal_sort[a18](eq(x2, y1), true_renamed) -> false | del(x2, cons(y1, xs1)) -> cons(y1, del(x2, xs1)) using the following formula: x:sort[a19],xs:sort[a4].if'(eq(x, x), x, x, xs)=true could be successfully shown: (0) Formula (1) Induction by data structure [EQUIVALENT, 0 ms] (2) AND (3) Formula (4) Symbolic evaluation [EQUIVALENT, 0 ms] (5) YES (6) Formula (7) Symbolic evaluation [EQUIVALENT, 0 ms] (8) Formula (9) Case Analysis [EQUIVALENT, 0 ms] (10) AND (11) Formula (12) Inverse Substitution [SOUND, 0 ms] (13) Formula (14) Induction by data structure [SOUND, 0 ms] (15) AND (16) Formula (17) Symbolic evaluation [EQUIVALENT, 0 ms] (18) YES (19) Formula (20) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms] (21) YES (22) Formula (23) Inverse Substitution [SOUND, 0 ms] (24) Formula (25) Induction by data structure [SOUND, 0 ms] (26) AND (27) Formula (28) Symbolic evaluation [EQUIVALENT, 0 ms] (29) YES (30) Formula (31) Symbolic evaluation under hypothesis [EQUIVALENT, 0 ms] (32) YES ---------------------------------------- (0) Obligation: Formula: x:sort[a19],xs:sort[a4].if'(eq(x, x), x, x, xs)=true There are no hypotheses. ---------------------------------------- (1) Induction by data structure (EQUIVALENT) Induction by data structure sort[a19] generates the following cases: 1. Base Case: Formula: xs:sort[a4].if'(eq(0, 0), 0, 0, xs)=true There are no hypotheses. 1. Step Case: Formula: n:sort[a19],xs:sort[a4].if'(eq(s(n), s(n)), s(n), s(n), xs)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (2) Complex Obligation (AND) ---------------------------------------- (3) Obligation: Formula: xs:sort[a4].if'(eq(0, 0), 0, 0, xs)=true There are no hypotheses. ---------------------------------------- (4) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (5) YES ---------------------------------------- (6) Obligation: Formula: n:sort[a19],xs:sort[a4].if'(eq(s(n), s(n)), s(n), s(n), xs)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (7) Symbolic evaluation (EQUIVALENT) Could be shown by simple symbolic evaluation. ---------------------------------------- (8) Obligation: Formula: n:sort[a19],xs:sort[a4].if'(eq(n, n), s(n), s(n), xs)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (9) Case Analysis (EQUIVALENT) Case analysis leads to the following new obligations: Formula: n:sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(n, n), s(n), s(n), cons(x_1, x_2))=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true Formula: n:sort[a19].if'(eq(n, n), s(n), s(n), nil)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Formula: n:sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(n, n), s(n), s(n), cons(x_1, x_2))=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (12) Inverse Substitution (SOUND) The formula could be generalised by inverse substitution to: n:sort[a19],n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(n, n), n', n', cons(x_1, x_2))=true Inverse substitution used: [s(n)/n'] ---------------------------------------- (13) Obligation: Formula: n:sort[a19],n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(n, n), n', n', cons(x_1, x_2))=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (14) Induction by data structure (SOUND) Induction by data structure sort[a19] generates the following cases: 1. Base Case: Formula: n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(0, 0), n', n', cons(x_1, x_2))=true There are no hypotheses. 1. Step Case: Formula: n'':sort[a19],n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(s(n''), s(n'')), n', n', cons(x_1, x_2))=true Hypotheses: n'':sort[a19],!n':sort[a19],!x_1:sort[a19],!x_2:sort[a4].if'(eq(n'', n''), n', n', cons(x_1, x_2))=true ---------------------------------------- (15) Complex Obligation (AND) ---------------------------------------- (16) Obligation: Formula: n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(0, 0), n', n', cons(x_1, x_2))=true There are no hypotheses. ---------------------------------------- (17) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Formula: n'':sort[a19],n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(s(n''), s(n'')), n', n', cons(x_1, x_2))=true Hypotheses: n'':sort[a19],!n':sort[a19],!x_1:sort[a19],!x_2:sort[a4].if'(eq(n'', n''), n', n', cons(x_1, x_2))=true ---------------------------------------- (20) Symbolic evaluation under hypothesis (EQUIVALENT) Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses: n'':sort[a19],!n':sort[a19],!x_1:sort[a19],!x_2:sort[a4].if'(eq(n'', n''), n', n', cons(x_1, x_2))=true ---------------------------------------- (21) YES ---------------------------------------- (22) Obligation: Formula: n:sort[a19].if'(eq(n, n), s(n), s(n), nil)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (23) Inverse Substitution (SOUND) The formula could be generalised by inverse substitution to: n:sort[a19],n':sort[a19].if'(eq(n, n), n', n', nil)=true Inverse substitution used: [s(n)/n'] ---------------------------------------- (24) Obligation: Formula: n:sort[a19],n':sort[a19].if'(eq(n, n), n', n', nil)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (25) Induction by data structure (SOUND) Induction by data structure sort[a19] generates the following cases: 1. Base Case: Formula: n':sort[a19].if'(eq(0, 0), n', n', nil)=true There are no hypotheses. 1. Step Case: Formula: n'':sort[a19],n':sort[a19].if'(eq(s(n''), s(n'')), n', n', nil)=true Hypotheses: n'':sort[a19],!n':sort[a19].if'(eq(n'', n''), n', n', nil)=true ---------------------------------------- (26) Complex Obligation (AND) ---------------------------------------- (27) Obligation: Formula: n':sort[a19].if'(eq(0, 0), n', n', nil)=true There are no hypotheses. ---------------------------------------- (28) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Formula: n'':sort[a19],n':sort[a19].if'(eq(s(n''), s(n'')), n', n', nil)=true Hypotheses: n'':sort[a19],!n':sort[a19].if'(eq(n'', n''), n', n', nil)=true ---------------------------------------- (31) Symbolic evaluation under hypothesis (EQUIVALENT) Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses: n'':sort[a19],!n':sort[a19].if'(eq(n'', n''), n', n', nil)=true ---------------------------------------- (32) YES ---------------------------------------- (44) Complex Obligation (AND) ---------------------------------------- (45) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: eq(0, 0) -> true eq(s(x), s(y)) -> eq(x, y) if(true, x, y, xs) -> xs if(false, x, y, xs) -> cons(y, del(x, xs)) del(x, cons(y, xs)) -> if(eq(x, y), x, y, xs) del(x, nil) -> nil eq(0, s(y)) -> false eq(s(x), 0) -> false The set Q consists of the following terms: del(x0, nil) del(x0, cons(x1, x2)) if(true, x0, x1, x2) if(false, x0, x1, x2) eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (47) YES ---------------------------------------- (48) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: if'(true_renamed, x'', y', xs') -> true if'(false_renamed, x1, y'', xs'') -> del'(x1, xs'') del'(x2, cons(y1, xs1)) -> if'(eq(x2, y1), x2, y1, xs1) del'(x3, nil) -> false eq(0, 0) -> true_renamed eq(s(x'), s(y)) -> eq(x', y) if(true_renamed, x'', y', xs') -> xs' if(false_renamed, x1, y'', xs'') -> cons(y'', del(x1, xs'')) del(x2, cons(y1, xs1)) -> if(eq(x2, y1), x2, y1, xs1) del(x3, nil) -> nil eq(0, s(y2)) -> false_renamed eq(s(x4), 0) -> false_renamed equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a19](0, 0) -> true equal_sort[a19](0, s(v13)) -> false equal_sort[a19](s(v14), 0) -> false equal_sort[a19](s(v14), s(v15)) -> equal_sort[a19](v14, v15) equal_sort[a4](cons(v16, v17), cons(v18, v19)) -> and(equal_sort[a19](v16, v18), equal_sort[a4](v17, v19)) equal_sort[a4](cons(v16, v17), nil) -> false equal_sort[a4](nil, cons(v20, v21)) -> false equal_sort[a4](nil, nil) -> true equal_sort[a18](true_renamed, true_renamed) -> true equal_sort[a18](true_renamed, false_renamed) -> false equal_sort[a18](false_renamed, true_renamed) -> false equal_sort[a18](false_renamed, false_renamed) -> true equal_sort[a37](witness_sort[a37], witness_sort[a37]) -> true Q is empty. ---------------------------------------- (49) QTRSRRRProof (EQUIVALENT) Used ordering: if'/4(YES,YES,YES,YES) true_renamed/0) true/0) false_renamed/0) del'/2(YES,YES) cons/2(YES,YES) eq/2(YES,YES) nil/0) false/0) 0/0) s/1)YES( if/4(YES,YES,YES,YES) del/2(YES,YES) equal_bool/2(YES,YES) and/2(YES,YES) or/2(YES,YES) not/1)YES( isa_true/1(YES) isa_false/1)YES( equal_sort[a19]/2(YES,YES) equal_sort[a4]/2(YES,YES) equal_sort[a18]/2(YES,YES) equal_sort[a37]/2(YES,YES) witness_sort[a37]/0) Quasi precedence: [true_renamed, 0] > [true, nil, false, witness_sort[a37]] [true_renamed, 0] > false_renamed [if_4, del_2] > [if'_4, del'_2, eq_2] > false_renamed [if_4, del_2] > cons_2 > and_2 equal_bool_2 > [true, nil, false, witness_sort[a37]] equal_sort[a4]_2 > and_2 equal_sort[a4]_2 > equal_sort[a19]_2 equal_sort[a18]_2 > [true, nil, false, witness_sort[a37]] equal_sort[a37]_2 > [true, nil, false, witness_sort[a37]] Status: if'_4: [2,4,1,3] true_renamed: multiset status true: multiset status false_renamed: multiset status del'_2: [1,2] cons_2: multiset status eq_2: [1,2] nil: multiset status false: multiset status 0: multiset status if_4: [4,2,1,3] del_2: [2,1] equal_bool_2: multiset status and_2: [1,2] or_2: [2,1] isa_true_1: multiset status equal_sort[a19]_2: [2,1] equal_sort[a4]_2: multiset status equal_sort[a18]_2: multiset status equal_sort[a37]_2: multiset status witness_sort[a37]: multiset status With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: if'(true_renamed, x'', y', xs') -> true if'(false_renamed, x1, y'', xs'') -> del'(x1, xs'') del'(x2, cons(y1, xs1)) -> if'(eq(x2, y1), x2, y1, xs1) del'(x3, nil) -> false eq(0, 0) -> true_renamed if(true_renamed, x'', y', xs') -> xs' if(false_renamed, x1, y'', xs'') -> cons(y'', del(x1, xs'')) del(x2, cons(y1, xs1)) -> if(eq(x2, y1), x2, y1, xs1) del(x3, nil) -> nil eq(0, s(y2)) -> false_renamed eq(s(x4), 0) -> false_renamed equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x isa_true(true) -> true isa_true(false) -> false equal_sort[a19](0, 0) -> true equal_sort[a19](0, s(v13)) -> false equal_sort[a19](s(v14), 0) -> false equal_sort[a4](cons(v16, v17), cons(v18, v19)) -> and(equal_sort[a19](v16, v18), equal_sort[a4](v17, v19)) equal_sort[a4](cons(v16, v17), nil) -> false equal_sort[a4](nil, cons(v20, v21)) -> false equal_sort[a4](nil, nil) -> true equal_sort[a18](true_renamed, true_renamed) -> true equal_sort[a18](true_renamed, false_renamed) -> false equal_sort[a18](false_renamed, true_renamed) -> false equal_sort[a18](false_renamed, false_renamed) -> true equal_sort[a37](witness_sort[a37], witness_sort[a37]) -> true ---------------------------------------- (50) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: eq(s(x'), s(y)) -> eq(x', y) not(false) -> true not(true) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a19](s(v14), s(v15)) -> equal_sort[a19](v14, v15) Q is empty. ---------------------------------------- (51) QTRSRRRProof (EQUIVALENT) Used ordering: Knuth-Bendix order [KBO] with precedence:s_1 > equal_sort[a19]_2 > isa_false_1 > not_1 > eq_2 > true > false and weight map: false=1 true=2 s_1=0 not_1=1 isa_false_1=1 eq_2=0 equal_sort[a19]_2=0 The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: eq(s(x'), s(y)) -> eq(x', y) not(false) -> true not(true) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a19](s(v14), s(v15)) -> equal_sort[a19](v14, v15) ---------------------------------------- (52) Obligation: Q restricted rewrite system: R is empty. Q is empty. ---------------------------------------- (53) RisEmptyProof (EQUIVALENT) The TRS R is empty. Hence, termination is trivially proven. ---------------------------------------- (54) YES