/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 59 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) ATransformationProof [EQUIVALENT, 0 ms] (11) QDP (12) QReductionProof [EQUIVALENT, 0 ms] (13) QDP (14) QDPSizeChangeProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) QDPApplicativeOrderProof [EQUIVALENT, 31 ms] (18) QDP (19) UsableRulesProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a(a(divides, 0), a(s, y)) -> true a(a(divides, a(s, x)), a(s, y)) -> a(a(a(div2, x), a(s, y)), y) a(a(a(div2, x), y), 0) -> a(a(divides, x), y) a(a(a(div2, 0), y), a(s, z)) -> false a(a(a(div2, a(s, x)), y), a(s, z)) -> a(a(a(div2, x), y), z) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), x) -> a(not2, a(f, x)) a(not2, true) -> false a(not2, false) -> true a(sieve, nil) -> nil a(sieve, a(a(cons, x), xs)) -> a(a(cons, x), a(sieve, a(a(filter, a(not, a(divides, x))), xs))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a(a(divides, 0), a(s, y)) -> true a(a(divides, a(s, x)), a(s, y)) -> a(a(a(div2, x), a(s, y)), y) a(a(a(div2, x), y), 0) -> a(a(divides, x), y) a(a(a(div2, 0), y), a(s, z)) -> false a(a(a(div2, a(s, x)), y), a(s, z)) -> a(a(a(div2, x), y), z) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), x) -> a(not2, a(f, x)) a(not2, true) -> false a(not2, false) -> true a(sieve, nil) -> nil a(sieve, a(a(cons, x), xs)) -> a(a(cons, x), a(sieve, a(a(filter, a(not, a(divides, x))), xs))) The set Q consists of the following terms: a(a(divides, 0), a(s, x0)) a(a(divides, a(s, x0)), a(s, x1)) a(a(a(div2, x0), x1), 0) a(a(a(div2, 0), x0), a(s, x1)) a(a(a(div2, a(s, x0)), x1), a(s, x2)) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(sieve, nil) a(sieve, a(a(cons, x0), x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(divides, a(s, x)), a(s, y)) -> A(a(a(div2, x), a(s, y)), y) A(a(divides, a(s, x)), a(s, y)) -> A(a(div2, x), a(s, y)) A(a(divides, a(s, x)), a(s, y)) -> A(div2, x) A(a(a(div2, x), y), 0) -> A(a(divides, x), y) A(a(a(div2, x), y), 0) -> A(divides, x) A(a(a(div2, a(s, x)), y), a(s, z)) -> A(a(a(div2, x), y), z) A(a(a(div2, a(s, x)), y), a(s, z)) -> A(a(div2, x), y) A(a(a(div2, a(s, x)), y), a(s, z)) -> A(div2, x) A(a(filter, f), a(a(cons, x), xs)) -> A(a(a(if, a(f, x)), x), a(a(filter, f), xs)) A(a(filter, f), a(a(cons, x), xs)) -> A(a(if, a(f, x)), x) A(a(filter, f), a(a(cons, x), xs)) -> A(if, a(f, x)) A(a(filter, f), a(a(cons, x), xs)) -> A(f, x) A(a(filter, f), a(a(cons, x), xs)) -> A(a(filter, f), xs) A(a(a(if, true), x), xs) -> A(a(cons, x), xs) A(a(a(if, true), x), xs) -> A(cons, x) A(a(not, f), x) -> A(not2, a(f, x)) A(a(not, f), x) -> A(f, x) A(sieve, a(a(cons, x), xs)) -> A(a(cons, x), a(sieve, a(a(filter, a(not, a(divides, x))), xs))) A(sieve, a(a(cons, x), xs)) -> A(sieve, a(a(filter, a(not, a(divides, x))), xs)) A(sieve, a(a(cons, x), xs)) -> A(a(filter, a(not, a(divides, x))), xs) A(sieve, a(a(cons, x), xs)) -> A(filter, a(not, a(divides, x))) A(sieve, a(a(cons, x), xs)) -> A(not, a(divides, x)) A(sieve, a(a(cons, x), xs)) -> A(divides, x) The TRS R consists of the following rules: a(a(divides, 0), a(s, y)) -> true a(a(divides, a(s, x)), a(s, y)) -> a(a(a(div2, x), a(s, y)), y) a(a(a(div2, x), y), 0) -> a(a(divides, x), y) a(a(a(div2, 0), y), a(s, z)) -> false a(a(a(div2, a(s, x)), y), a(s, z)) -> a(a(a(div2, x), y), z) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), x) -> a(not2, a(f, x)) a(not2, true) -> false a(not2, false) -> true a(sieve, nil) -> nil a(sieve, a(a(cons, x), xs)) -> a(a(cons, x), a(sieve, a(a(filter, a(not, a(divides, x))), xs))) The set Q consists of the following terms: a(a(divides, 0), a(s, x0)) a(a(divides, a(s, x0)), a(s, x1)) a(a(a(div2, x0), x1), 0) a(a(a(div2, 0), x0), a(s, x1)) a(a(a(div2, a(s, x0)), x1), a(s, x2)) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(sieve, nil) a(sieve, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 15 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(a(div2, x), y), 0) -> A(a(divides, x), y) A(a(divides, a(s, x)), a(s, y)) -> A(a(a(div2, x), a(s, y)), y) A(a(a(div2, a(s, x)), y), a(s, z)) -> A(a(a(div2, x), y), z) The TRS R consists of the following rules: a(a(divides, 0), a(s, y)) -> true a(a(divides, a(s, x)), a(s, y)) -> a(a(a(div2, x), a(s, y)), y) a(a(a(div2, x), y), 0) -> a(a(divides, x), y) a(a(a(div2, 0), y), a(s, z)) -> false a(a(a(div2, a(s, x)), y), a(s, z)) -> a(a(a(div2, x), y), z) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), x) -> a(not2, a(f, x)) a(not2, true) -> false a(not2, false) -> true a(sieve, nil) -> nil a(sieve, a(a(cons, x), xs)) -> a(a(cons, x), a(sieve, a(a(filter, a(not, a(divides, x))), xs))) The set Q consists of the following terms: a(a(divides, 0), a(s, x0)) a(a(divides, a(s, x0)), a(s, x1)) a(a(a(div2, x0), x1), 0) a(a(a(div2, 0), x0), a(s, x1)) a(a(a(div2, a(s, x0)), x1), a(s, x2)) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(sieve, nil) a(sieve, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(a(div2, x), y), 0) -> A(a(divides, x), y) A(a(divides, a(s, x)), a(s, y)) -> A(a(a(div2, x), a(s, y)), y) A(a(a(div2, a(s, x)), y), a(s, z)) -> A(a(a(div2, x), y), z) R is empty. The set Q consists of the following terms: a(a(divides, 0), a(s, x0)) a(a(divides, a(s, x0)), a(s, x1)) a(a(a(div2, x0), x1), 0) a(a(a(div2, 0), x0), a(s, x1)) a(a(a(div2, a(s, x0)), x1), a(s, x2)) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(sieve, nil) a(sieve, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) ATransformationProof (EQUIVALENT) We have applied the A-Transformation [FROCOS05] to get from an applicative problem to a standard problem. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: div21(x, y, 0) -> divides1(x, y) divides1(s(x), s(y)) -> div21(x, s(y), y) div21(s(x), y, s(z)) -> div21(x, y, z) R is empty. The set Q consists of the following terms: divides(0, s(x0)) divides(s(x0), s(x1)) div2(x0, x1, 0) div2(0, x0, s(x1)) div2(s(x0), x1, s(x2)) filter(x0, nil) filter(x0, cons(x1, x2)) if(true, x0, x1) if(false, x0, x1) not(x0, x1) not2(true) not2(false) sieve(nil) sieve(cons(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. divides(0, s(x0)) divides(s(x0), s(x1)) div2(x0, x1, 0) div2(0, x0, s(x1)) div2(s(x0), x1, s(x2)) filter(x0, nil) filter(x0, cons(x1, x2)) if(true, x0, x1) if(false, x0, x1) not(x0, x1) not2(true) not2(false) sieve(nil) sieve(cons(x0, x1)) ---------------------------------------- (13) Obligation: Q DP problem: The TRS P consists of the following rules: div21(x, y, 0) -> divides1(x, y) divides1(s(x), s(y)) -> div21(x, s(y), y) div21(s(x), y, s(z)) -> div21(x, y, z) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *divides1(s(x), s(y)) -> div21(x, s(y), y) The graph contains the following edges 1 > 1, 2 >= 2, 2 > 3 *div21(s(x), y, s(z)) -> div21(x, y, z) The graph contains the following edges 1 > 1, 2 >= 2, 3 > 3 *div21(x, y, 0) -> divides1(x, y) The graph contains the following edges 1 >= 1, 2 >= 2 ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(filter, f), a(a(cons, x), xs)) -> A(a(filter, f), xs) A(a(filter, f), a(a(cons, x), xs)) -> A(f, x) A(a(not, f), x) -> A(f, x) A(sieve, a(a(cons, x), xs)) -> A(sieve, a(a(filter, a(not, a(divides, x))), xs)) A(sieve, a(a(cons, x), xs)) -> A(a(filter, a(not, a(divides, x))), xs) The TRS R consists of the following rules: a(a(divides, 0), a(s, y)) -> true a(a(divides, a(s, x)), a(s, y)) -> a(a(a(div2, x), a(s, y)), y) a(a(a(div2, x), y), 0) -> a(a(divides, x), y) a(a(a(div2, 0), y), a(s, z)) -> false a(a(a(div2, a(s, x)), y), a(s, z)) -> a(a(a(div2, x), y), z) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), x) -> a(not2, a(f, x)) a(not2, true) -> false a(not2, false) -> true a(sieve, nil) -> nil a(sieve, a(a(cons, x), xs)) -> a(a(cons, x), a(sieve, a(a(filter, a(not, a(divides, x))), xs))) The set Q consists of the following terms: a(a(divides, 0), a(s, x0)) a(a(divides, a(s, x0)), a(s, x1)) a(a(a(div2, x0), x1), 0) a(a(a(div2, 0), x0), a(s, x1)) a(a(a(div2, a(s, x0)), x1), a(s, x2)) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(sieve, nil) a(sieve, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPApplicativeOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04].First, we preprocessed all pairs by applying the argument filter which replaces every head symbol by its second argument. Then we combined the reduction pair processor [LPAR04,JAR06] with the A-transformation [FROCOS05] which results in the following intermediate Q-DP Problem. The a-transformed P is (cons(x, xs),xs) (cons(x, xs),x) (x,x) (cons(x, xs),filter(not(divides(x)), xs)) (cons(x, xs),xs) The a-transformed usable rules are filter(f, cons(x, xs)) -> if(notProper, x, filter(f, xs)) if(true, x, xs) -> cons(x, xs) filter(f, nil) -> nil if(false, x, xs) -> xs The following pairs can be oriented strictly and are deleted. A(a(filter, f), a(a(cons, x), xs)) -> A(a(filter, f), xs) A(a(filter, f), a(a(cons, x), xs)) -> A(f, x) A(sieve, a(a(cons, x), xs)) -> A(sieve, a(a(filter, a(not, a(divides, x))), xs)) A(sieve, a(a(cons, x), xs)) -> A(a(filter, a(not, a(divides, x))), xs) The remaining pairs can at least be oriented weakly. A(a(not, f), x) -> A(f, x) Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( filter_2(x_1, x_2) ) = max{0, 2x_2 - 1} POL( cons_2(x_1, x_2) ) = 2x_1 + 2x_2 + 1 POL( if_3(x_1, ..., x_3) ) = 2x_2 + 2x_3 + 1 POL( notProper ) = 0 POL( true ) = 0 POL( nil ) = 2 POL( false ) = 0 POL( not_1(x_1) ) = max{0, -2} POL( divides_1(x_1) ) = x_1 + 1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(filter, f), nil) -> nil a(a(a(if, false), x), xs) -> xs ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(not, f), x) -> A(f, x) The TRS R consists of the following rules: a(a(divides, 0), a(s, y)) -> true a(a(divides, a(s, x)), a(s, y)) -> a(a(a(div2, x), a(s, y)), y) a(a(a(div2, x), y), 0) -> a(a(divides, x), y) a(a(a(div2, 0), y), a(s, z)) -> false a(a(a(div2, a(s, x)), y), a(s, z)) -> a(a(a(div2, x), y), z) a(a(filter, f), nil) -> nil a(a(filter, f), a(a(cons, x), xs)) -> a(a(a(if, a(f, x)), x), a(a(filter, f), xs)) a(a(a(if, true), x), xs) -> a(a(cons, x), xs) a(a(a(if, false), x), xs) -> xs a(a(not, f), x) -> a(not2, a(f, x)) a(not2, true) -> false a(not2, false) -> true a(sieve, nil) -> nil a(sieve, a(a(cons, x), xs)) -> a(a(cons, x), a(sieve, a(a(filter, a(not, a(divides, x))), xs))) The set Q consists of the following terms: a(a(divides, 0), a(s, x0)) a(a(divides, a(s, x0)), a(s, x1)) a(a(a(div2, x0), x1), 0) a(a(a(div2, 0), x0), a(s, x1)) a(a(a(div2, a(s, x0)), x1), a(s, x2)) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(sieve, nil) a(sieve, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: A(a(not, f), x) -> A(f, x) R is empty. The set Q consists of the following terms: a(a(divides, 0), a(s, x0)) a(a(divides, a(s, x0)), a(s, x1)) a(a(a(div2, x0), x1), 0) a(a(a(div2, 0), x0), a(s, x1)) a(a(a(div2, a(s, x0)), x1), a(s, x2)) a(a(filter, x0), nil) a(a(filter, x0), a(a(cons, x1), x2)) a(a(a(if, true), x0), x1) a(a(a(if, false), x0), x1) a(a(not, x0), x1) a(not2, true) a(not2, false) a(sieve, nil) a(sieve, a(a(cons, x0), x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *A(a(not, f), x) -> A(f, x) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (22) YES