/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) Induction-Processor [SOUND, 6 ms] (27) AND (28) QDP (29) PisEmptyProof [EQUIVALENT, 0 ms] (30) YES (31) QTRS (32) QTRSRRRProof [EQUIVALENT, 13 ms] (33) QTRS (34) QTRSRRRProof [EQUIVALENT, 0 ms] (35) QTRS (36) RisEmptyProof [EQUIVALENT, 0 ms] (37) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) The set Q consists of the following terms: leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: LEQ(s(x), s(y)) -> LEQ(x, y) -^1(s(x), s(y)) -> -^1(x, y) MOD(s(x), s(y)) -> IF(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) MOD(s(x), s(y)) -> LEQ(y, x) MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y)) MOD(s(x), s(y)) -> -^1(s(x), s(y)) The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) The set Q consists of the following terms: leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(s(x), s(y)) -> -^1(x, y) The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) The set Q consists of the following terms: leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(s(x), s(y)) -> -^1(x, y) R is empty. The set Q consists of the following terms: leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(s(x), s(y)) -> -^1(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *-^1(s(x), s(y)) -> -^1(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LEQ(s(x), s(y)) -> LEQ(x, y) The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) The set Q consists of the following terms: leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LEQ(s(x), s(y)) -> LEQ(x, y) R is empty. The set Q consists of the following terms: leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LEQ(s(x), s(y)) -> LEQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LEQ(s(x), s(y)) -> LEQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y)) The TRS R consists of the following rules: leq(0, y) -> true leq(s(x), 0) -> false leq(s(x), s(y)) -> leq(x, y) if(true, x, y) -> x if(false, x, y) -> y -(x, 0) -> x -(s(x), s(y)) -> -(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if(leq(y, x), mod(-(s(x), s(y)), s(y)), s(x)) The set Q consists of the following terms: leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y)) The TRS R consists of the following rules: -(s(x), s(y)) -> -(x, y) -(x, 0) -> x The set Q consists of the following terms: leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) -(x0, 0) -(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. leq(0, x0) leq(s(x0), 0) leq(s(x0), s(x1)) if(true, x0, x1) if(false, x0, x1) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y)) The TRS R consists of the following rules: -(s(x), s(y)) -> -(x, y) -(x, 0) -> x The set Q consists of the following terms: -(x0, 0) -(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) Induction-Processor (SOUND) This DP could be deleted by the Induction-Processor: MOD(s(x), s(y)) -> MOD(-(s(x), s(y)), s(y)) This order was computed: Polynomial interpretation [POLO]: POL(-(x_1, x_2)) = x_1 POL(0) = 1 POL(MOD(x_1, x_2)) = x_1 POL(s(x_1)) = 1 + x_1 At least one of these decreasing rules is always used after the deleted DP: -(s(x'), s(y')) -> -(x', y') The following formula is valid: x:sort[a0],y:sort[a0].-'(s(x), s(y))=true The transformed set: -'(s(x'), s(y')) -> true -'(x'', 0) -> false -'(0, s(v4)) -> false -(s(x'), s(y')) -> -(x', y') -(x'', 0) -> x'' -(0, s(v4)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) equal_sort[a0](s(v5), 0) -> false equal_sort[a0](0, s(v7)) -> false equal_sort[a0](0, 0) -> true equal_sort[a13](witness_sort[a13], witness_sort[a13]) -> true The proof given by the theorem prover: The following output was given by the internal theorem prover:proof of internal # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Partial correctness of the following Program [x, v5, v6, v7, x', y', x'', v4] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) equal_sort[a0](s(v5), 0) -> false equal_sort[a0](0, s(v7)) -> false equal_sort[a0](0, 0) -> true equal_sort[a13](witness_sort[a13], witness_sort[a13]) -> true -'(s(x'), s(y')) -> true -'(x'', 0) -> false -'(0, s(v4)) -> false -(s(x'), s(y')) -> -(x', y') -(x'', 0) -> x'' -(0, s(v4)) -> 0 using the following formula: x:sort[a0],y:sort[a0].-'(s(x), s(y))=true could be successfully shown: (0) Formula (1) Symbolic evaluation [EQUIVALENT, 0 ms] (2) YES ---------------------------------------- (0) Obligation: Formula: x:sort[a0],y:sort[a0].-'(s(x), s(y))=true There are no hypotheses. ---------------------------------------- (1) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (2) YES ---------------------------------------- (27) Complex Obligation (AND) ---------------------------------------- (28) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: -(s(x), s(y)) -> -(x, y) -(x, 0) -> x The set Q consists of the following terms: -(x0, 0) -(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (30) YES ---------------------------------------- (31) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: -'(s(x'), s(y')) -> true -'(x'', 0) -> false -'(0, s(v4)) -> false -(s(x'), s(y')) -> -(x', y') -(x'', 0) -> x'' -(0, s(v4)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) equal_sort[a0](s(v5), 0) -> false equal_sort[a0](0, s(v7)) -> false equal_sort[a0](0, 0) -> true equal_sort[a13](witness_sort[a13], witness_sort[a13]) -> true Q is empty. ---------------------------------------- (32) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(-(x_1, x_2)) = 2*x_1 + 2*x_2 POL(-'(x_1, x_2)) = 2 + x_1 + 2*x_2 POL(0) = 2 POL(and(x_1, x_2)) = 1 + 2*x_1 + x_2 POL(equal_bool(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 POL(equal_sort[a0](x_1, x_2)) = 2*x_1 + 2*x_2 POL(equal_sort[a13](x_1, x_2)) = 2*x_1 + 2*x_2 POL(false) = 2 POL(isa_false(x_1)) = 2 + 2*x_1 POL(isa_true(x_1)) = 1 + 2*x_1 POL(not(x_1)) = 2*x_1 POL(or(x_1, x_2)) = 1 + x_1 + x_2 POL(s(x_1)) = 2*x_1 POL(true) = 1 POL(witness_sort[a13]) = 2 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: -'(s(x'), s(y')) -> true -'(x'', 0) -> false -'(0, s(v4)) -> false -(x'', 0) -> x'' -(0, s(v4)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](s(v5), 0) -> false equal_sort[a0](0, s(v7)) -> false equal_sort[a0](0, 0) -> true equal_sort[a13](witness_sort[a13], witness_sort[a13]) -> true ---------------------------------------- (33) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: -(s(x'), s(y')) -> -(x', y') not(true) -> false equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) Q is empty. ---------------------------------------- (34) QTRSRRRProof (EQUIVALENT) Used ordering: Knuth-Bendix order [KBO] with precedence:s_1 > equal_sort[a0]_2 > not_1 > false > true > -_2 and weight map: true=1 false=2 s_1=0 not_1=1 -_2=0 equal_sort[a0]_2=0 The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: -(s(x'), s(y')) -> -(x', y') not(true) -> false equal_sort[a0](s(v5), s(v6)) -> equal_sort[a0](v5, v6) ---------------------------------------- (35) Obligation: Q restricted rewrite system: R is empty. Q is empty. ---------------------------------------- (36) RisEmptyProof (EQUIVALENT) The TRS R is empty. Hence, termination is trivially proven. ---------------------------------------- (37) YES