/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) QDPOrderProof [EQUIVALENT, 2 ms] (7) QDP (8) PisEmptyProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) QDPOrderProof [EQUIVALENT, 0 ms] (12) QDP (13) PisEmptyProof [EQUIVALENT, 0 ms] (14) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: c(c(z, y, a), a, a) -> b(z, y) f(c(x, y, z)) -> c(z, f(b(y, z)), a) b(z, b(c(a, y, a), f(f(x)))) -> c(c(y, a, z), z, x) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: C(c(z, y, a), a, a) -> B(z, y) F(c(x, y, z)) -> C(z, f(b(y, z)), a) F(c(x, y, z)) -> F(b(y, z)) F(c(x, y, z)) -> B(y, z) B(z, b(c(a, y, a), f(f(x)))) -> C(c(y, a, z), z, x) B(z, b(c(a, y, a), f(f(x)))) -> C(y, a, z) The TRS R consists of the following rules: c(c(z, y, a), a, a) -> b(z, y) f(c(x, y, z)) -> c(z, f(b(y, z)), a) b(z, b(c(a, y, a), f(f(x)))) -> c(c(y, a, z), z, x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 2 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: B(z, b(c(a, y, a), f(f(x)))) -> C(c(y, a, z), z, x) C(c(z, y, a), a, a) -> B(z, y) B(z, b(c(a, y, a), f(f(x)))) -> C(y, a, z) The TRS R consists of the following rules: c(c(z, y, a), a, a) -> b(z, y) f(c(x, y, z)) -> c(z, f(b(y, z)), a) b(z, b(c(a, y, a), f(f(x)))) -> c(c(y, a, z), z, x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. B(z, b(c(a, y, a), f(f(x)))) -> C(c(y, a, z), z, x) C(c(z, y, a), a, a) -> B(z, y) B(z, b(c(a, y, a), f(f(x)))) -> C(y, a, z) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. B(x1, x2) = x2 b(x1, x2) = b(x1, x2) c(x1, x2, x3) = c(x1, x2) a = a f(x1) = f C(x1, x2, x3) = x1 Knuth-Bendix order [KBO] with precedence:trivial and weight map: a=4 b_2=11 c_2=8 f=7 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(z, b(c(a, y, a), f(f(x)))) -> c(c(y, a, z), z, x) c(c(z, y, a), a, a) -> b(z, y) ---------------------------------------- (7) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: c(c(z, y, a), a, a) -> b(z, y) f(c(x, y, z)) -> c(z, f(b(y, z)), a) b(z, b(c(a, y, a), f(f(x)))) -> c(c(y, a, z), z, x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: F(c(x, y, z)) -> F(b(y, z)) The TRS R consists of the following rules: c(c(z, y, a), a, a) -> b(z, y) f(c(x, y, z)) -> c(z, f(b(y, z)), a) b(z, b(c(a, y, a), f(f(x)))) -> c(c(y, a, z), z, x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(c(x, y, z)) -> F(b(y, z)) The remaining pairs can at least be oriented weakly. Used ordering: Matrix interpretation [MATRO] to (N^2, +, *, >=, >) : <<< POL(F(x_1)) = [[0]] + [[0, 1]] * x_1 >>> <<< POL(c(x_1, x_2, x_3)) = [[0], [1]] + [[1, 0], [1, 0]] * x_1 + [[1, 0], [1, 0]] * x_2 + [[0, 0], [1, 1]] * x_3 >>> <<< POL(b(x_1, x_2)) = [[1], [0]] + [[1, 0], [1, 0]] * x_1 + [[1, 0], [1, 0]] * x_2 >>> <<< POL(a) = [[1], [1]] >>> <<< POL(f(x_1)) = [[0], [0]] + [[1, 1], [1, 0]] * x_1 >>> The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: b(z, b(c(a, y, a), f(f(x)))) -> c(c(y, a, z), z, x) c(c(z, y, a), a, a) -> b(z, y) ---------------------------------------- (12) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: c(c(z, y, a), a, a) -> b(z, y) f(c(x, y, z)) -> c(z, f(b(y, z)), a) b(z, b(c(a, y, a), f(f(x)))) -> c(c(y, a, z), z, x) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (14) YES