/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) QTRSRRRProof [EQUIVALENT, 61 ms] (2) QTRS (3) QTRSRRRProof [EQUIVALENT, 0 ms] (4) QTRS (5) QTRSRRRProof [EQUIVALENT, 9 ms] (6) QTRS (7) QTRSRRRProof [EQUIVALENT, 0 ms] (8) QTRS (9) QTRSRRRProof [EQUIVALENT, 0 ms] (10) QTRS (11) AAECC Innermost [EQUIVALENT, 0 ms] (12) QTRS (13) DependencyPairsProof [EQUIVALENT, 0 ms] (14) QDP (15) DependencyGraphProof [EQUIVALENT, 0 ms] (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(0) -> cons(0, f(s(0))) a__f(s(0)) -> a__f(a__p(s(0))) a__p(s(0)) -> 0 mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0) -> 0 mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) Q is empty. ---------------------------------------- (1) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__f(x_1)) = 2 + 2*x_1 POL(a__p(x_1)) = 2*x_1 POL(cons(x_1, x_2)) = x_1 + x_2 POL(f(x_1)) = 1 + 2*x_1 POL(mark(x_1)) = 2*x_1 POL(p(x_1)) = 2*x_1 POL(s(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__f(0) -> cons(0, f(s(0))) a__f(X) -> f(X) ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(s(0)) -> a__f(a__p(s(0))) a__p(s(0)) -> 0 mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(0) -> 0 mark(cons(X1, X2)) -> cons(mark(X1), X2) mark(s(X)) -> s(mark(X)) a__p(X) -> p(X) Q is empty. ---------------------------------------- (3) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__f(x_1)) = 1 + x_1 POL(a__p(x_1)) = 2*x_1 POL(cons(x_1, x_2)) = 1 + x_1 + x_2 POL(f(x_1)) = 1 + 2*x_1 POL(mark(x_1)) = 2*x_1 POL(p(x_1)) = 2*x_1 POL(s(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: mark(f(X)) -> a__f(mark(X)) mark(cons(X1, X2)) -> cons(mark(X1), X2) ---------------------------------------- (4) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(s(0)) -> a__f(a__p(s(0))) a__p(s(0)) -> 0 mark(p(X)) -> a__p(mark(X)) mark(0) -> 0 mark(s(X)) -> s(mark(X)) a__p(X) -> p(X) Q is empty. ---------------------------------------- (5) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__f(x_1)) = 2*x_1 POL(a__p(x_1)) = x_1 POL(mark(x_1)) = 2 + 2*x_1 POL(p(x_1)) = x_1 POL(s(x_1)) = x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: mark(0) -> 0 ---------------------------------------- (6) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(s(0)) -> a__f(a__p(s(0))) a__p(s(0)) -> 0 mark(p(X)) -> a__p(mark(X)) mark(s(X)) -> s(mark(X)) a__p(X) -> p(X) Q is empty. ---------------------------------------- (7) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 2 POL(a__f(x_1)) = 2*x_1 POL(a__p(x_1)) = x_1 POL(mark(x_1)) = 2*x_1 POL(p(x_1)) = x_1 POL(s(x_1)) = 2*x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: a__p(s(0)) -> 0 ---------------------------------------- (8) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(s(0)) -> a__f(a__p(s(0))) mark(p(X)) -> a__p(mark(X)) mark(s(X)) -> s(mark(X)) a__p(X) -> p(X) Q is empty. ---------------------------------------- (9) QTRSRRRProof (EQUIVALENT) Used ordering: Polynomial interpretation [POLO]: POL(0) = 0 POL(a__f(x_1)) = x_1 POL(a__p(x_1)) = x_1 POL(mark(x_1)) = 2 + 2*x_1 POL(p(x_1)) = x_1 POL(s(x_1)) = 1 + x_1 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: mark(s(X)) -> s(mark(X)) ---------------------------------------- (10) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(s(0)) -> a__f(a__p(s(0))) mark(p(X)) -> a__p(mark(X)) a__p(X) -> p(X) Q is empty. ---------------------------------------- (11) AAECC Innermost (EQUIVALENT) We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is mark(p(X)) -> a__p(mark(X)) a__p(X) -> p(X) The TRS R 2 is a__f(s(0)) -> a__f(a__p(s(0))) The signature Sigma is {a__f_1} ---------------------------------------- (12) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: a__f(s(0)) -> a__f(a__p(s(0))) mark(p(X)) -> a__p(mark(X)) a__p(X) -> p(X) The set Q consists of the following terms: a__f(s(0)) mark(p(x0)) a__p(x0) ---------------------------------------- (13) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: A__F(s(0)) -> A__F(a__p(s(0))) A__F(s(0)) -> A__P(s(0)) MARK(p(X)) -> A__P(mark(X)) MARK(p(X)) -> MARK(X) The TRS R consists of the following rules: a__f(s(0)) -> a__f(a__p(s(0))) mark(p(X)) -> a__p(mark(X)) a__p(X) -> p(X) The set Q consists of the following terms: a__f(s(0)) mark(p(x0)) a__p(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(p(X)) -> MARK(X) The TRS R consists of the following rules: a__f(s(0)) -> a__f(a__p(s(0))) mark(p(X)) -> a__p(mark(X)) a__p(X) -> p(X) The set Q consists of the following terms: a__f(s(0)) mark(p(x0)) a__p(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(p(X)) -> MARK(X) R is empty. The set Q consists of the following terms: a__f(s(0)) mark(p(x0)) a__p(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. a__f(s(0)) mark(p(x0)) a__p(x0) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(p(X)) -> MARK(X) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(p(X)) -> MARK(X) The graph contains the following edges 1 > 1 ---------------------------------------- (22) YES