/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPOrderProof [EQUIVALENT, 29 ms] (27) QDP (28) DependencyGraphProof [EQUIVALENT, 0 ms] (29) TRUE (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QReductionProof [EQUIVALENT, 0 ms] (34) QDP (35) QDPSizeChangeProof [EQUIVALENT, 0 ms] (36) YES (37) QDP (38) UsableRulesProof [EQUIVALENT, 0 ms] (39) QDP (40) QReductionProof [EQUIVALENT, 0 ms] (41) QDP (42) QDPSizeChangeProof [EQUIVALENT, 0 ms] (43) YES (44) QDP (45) UsableRulesProof [EQUIVALENT, 0 ms] (46) QDP (47) QReductionProof [EQUIVALENT, 0 ms] (48) QDP (49) QDPOrderProof [EQUIVALENT, 68 ms] (50) QDP (51) UsableRulesProof [EQUIVALENT, 0 ms] (52) QDP (53) QReductionProof [EQUIVALENT, 0 ms] (54) QDP (55) QDPSizeChangeProof [EQUIVALENT, 0 ms] (56) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) LE(s(x), s(y)) -> LE(x, y) APP(add(n, x), y) -> APP(x, y) MIN(add(n, add(m, x))) -> IF_MIN(le(n, m), add(n, add(m, x))) MIN(add(n, add(m, x))) -> LE(n, m) IF_MIN(true, add(n, add(m, x))) -> MIN(add(n, x)) IF_MIN(false, add(n, add(m, x))) -> MIN(add(m, x)) RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) RM(n, add(m, x)) -> EQ(n, m) IF_RM(true, n, add(m, x)) -> RM(n, x) IF_RM(false, n, add(m, x)) -> RM(n, x) MINSORT(add(n, x), y) -> IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y) MINSORT(add(n, x), y) -> EQ(n, min(add(n, x))) MINSORT(add(n, x), y) -> MIN(add(n, x)) IF_MINSORT(true, add(n, x), y) -> MINSORT(app(rm(n, x), y), nil) IF_MINSORT(true, add(n, x), y) -> APP(rm(n, x), y) IF_MINSORT(true, add(n, x), y) -> RM(n, x) IF_MINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 6 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(add(n, x), y) -> APP(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(add(n, add(m, x))) -> IF_MIN(le(n, m), add(n, add(m, x))) IF_MIN(true, add(n, add(m, x))) -> MIN(add(n, x)) IF_MIN(false, add(n, add(m, x))) -> MIN(add(m, x)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(add(n, add(m, x))) -> IF_MIN(le(n, m), add(n, add(m, x))) IF_MIN(true, add(n, add(m, x))) -> MIN(add(n, x)) IF_MIN(false, add(n, add(m, x))) -> MIN(add(m, x)) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(add(n, add(m, x))) -> IF_MIN(le(n, m), add(n, add(m, x))) IF_MIN(true, add(n, add(m, x))) -> MIN(add(n, x)) IF_MIN(false, add(n, add(m, x))) -> MIN(add(m, x)) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF_MIN(true, add(n, add(m, x))) -> MIN(add(n, x)) IF_MIN(false, add(n, add(m, x))) -> MIN(add(m, x)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( IF_MIN_2(x_1, x_2) ) = 2x_2 + 2 POL( le_2(x_1, x_2) ) = 0 POL( 0 ) = 0 POL( true ) = 2 POL( s_1(x_1) ) = 2x_1 + 2 POL( false ) = 2 POL( MIN_1(x_1) ) = 2x_1 + 2 POL( add_2(x_1, x_2) ) = 2x_2 + 2 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: none ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: MIN(add(n, add(m, x))) -> IF_MIN(le(n, m), add(n, add(m, x))) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (29) TRUE ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: EQ(s(x), s(y)) -> EQ(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *EQ(s(x), s(y)) -> EQ(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (36) YES ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) IF_RM(true, n, add(m, x)) -> RM(n, x) IF_RM(false, n, add(m, x)) -> RM(n, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) IF_RM(true, n, add(m, x)) -> RM(n, x) IF_RM(false, n, add(m, x)) -> RM(n, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) IF_RM(true, n, add(m, x)) -> RM(n, x) IF_RM(false, n, add(m, x)) -> RM(n, x) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *RM(n, add(m, x)) -> IF_RM(eq(n, m), n, add(m, x)) The graph contains the following edges 1 >= 2, 2 >= 3 *IF_RM(true, n, add(m, x)) -> RM(n, x) The graph contains the following edges 2 >= 1, 3 > 2 *IF_RM(false, n, add(m, x)) -> RM(n, x) The graph contains the following edges 2 >= 1, 3 > 2 ---------------------------------------- (43) YES ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: IF_MINSORT(true, add(n, x), y) -> MINSORT(app(rm(n, x), y), nil) MINSORT(add(n, x), y) -> IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y) IF_MINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y)) The TRS R consists of the following rules: eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) minsort(nil, nil) -> nil minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: IF_MINSORT(true, add(n, x), y) -> MINSORT(app(rm(n, x), y), nil) MINSORT(add(n, x), y) -> IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y) IF_MINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y)) The TRS R consists of the following rules: min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minsort(nil, nil) minsort(add(x0, x1), x2) if_minsort(true, add(x0, x1), x2) if_minsort(false, add(x0, x1), x2) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: IF_MINSORT(true, add(n, x), y) -> MINSORT(app(rm(n, x), y), nil) MINSORT(add(n, x), y) -> IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y) IF_MINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y)) The TRS R consists of the following rules: min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF_MINSORT(true, add(n, x), y) -> MINSORT(app(rm(n, x), y), nil) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( MINSORT_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 2} POL( app_2(x_1, x_2) ) = x_1 + x_2 POL( rm_2(x_1, x_2) ) = x_2 POL( nil ) = 0 POL( add_2(x_1, x_2) ) = x_2 + 2 POL( if_rm_3(x_1, ..., x_3) ) = 2x_1 + x_3 POL( eq_2(x_1, x_2) ) = max{0, -2} POL( true ) = 0 POL( IF_MINSORT_3(x_1, ..., x_3) ) = max{0, 2x_2 + 2x_3 - 2} POL( min_1(x_1) ) = max{0, -2} POL( if_min_2(x_1, x_2) ) = max{0, x_2 - 2} POL( le_2(x_1, x_2) ) = 0 POL( false ) = 0 POL( 0 ) = 0 POL( s_1(x_1) ) = 0 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: MINSORT(add(n, x), y) -> IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y) IF_MINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y)) The TRS R consists of the following rules: min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) rm(n, nil) -> nil rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) if_rm(true, n, add(m, x)) -> rm(n, x) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: MINSORT(add(n, x), y) -> IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y) IF_MINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y)) The TRS R consists of the following rules: min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(add(x0, x1), x2) rm(x0, nil) rm(x0, add(x1, x2)) if_rm(true, x0, add(x1, x2)) if_rm(false, x0, add(x1, x2)) ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: MINSORT(add(n, x), y) -> IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y) IF_MINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y)) The TRS R consists of the following rules: min(add(n, nil)) -> n min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) if_min(true, add(n, add(m, x))) -> min(add(n, x)) if_min(false, add(n, add(m, x))) -> min(add(m, x)) eq(0, 0) -> true eq(0, s(x)) -> false eq(s(x), 0) -> false eq(s(x), s(y)) -> eq(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: eq(0, 0) eq(0, s(x0)) eq(s(x0), 0) eq(s(x0), s(x1)) le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) min(add(x0, nil)) min(add(x0, add(x1, x2))) if_min(true, add(x0, add(x1, x2))) if_min(false, add(x0, add(x1, x2))) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *IF_MINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y)) The graph contains the following edges 2 > 1 *MINSORT(add(n, x), y) -> IF_MINSORT(eq(n, min(add(n, x))), add(n, x), y) The graph contains the following edges 1 >= 2, 2 >= 3 ---------------------------------------- (56) YES