/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 10 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) MNOCProof [EQUIVALENT, 0 ms] (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) MNOCProof [EQUIVALENT, 0 ms] (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] (22) YES (23) QDP (24) MNOCProof [EQUIVALENT, 0 ms] (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QReductionProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPSizeChangeProof [EQUIVALENT, 0 ms] (31) YES (32) QDP (33) MNOCProof [EQUIVALENT, 0 ms] (34) QDP (35) UsableRulesProof [EQUIVALENT, 0 ms] (36) QDP (37) QReductionProof [EQUIVALENT, 0 ms] (38) QDP (39) TransformationProof [EQUIVALENT, 0 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) QDP (43) UsableRulesProof [EQUIVALENT, 0 ms] (44) QDP (45) QReductionProof [EQUIVALENT, 0 ms] (46) QDP (47) TransformationProof [EQUIVALENT, 0 ms] (48) QDP (49) UsableRulesProof [EQUIVALENT, 0 ms] (50) QDP (51) TransformationProof [EQUIVALENT, 0 ms] (52) QDP (53) UsableRulesProof [EQUIVALENT, 0 ms] (54) QDP (55) QReductionProof [EQUIVALENT, 0 ms] (56) QDP (57) TransformationProof [EQUIVALENT, 0 ms] (58) QDP (59) UsableRulesProof [EQUIVALENT, 0 ms] (60) QDP (61) QReductionProof [EQUIVALENT, 0 ms] (62) QDP (63) TransformationProof [EQUIVALENT, 0 ms] (64) QDP (65) QDPSizeChangeProof [EQUIVALENT, 0 ms] (66) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) TIMES(s(x), y) -> PLUS(y, times(x, y)) TIMES(s(x), y) -> TIMES(x, y) MINUS(x, s(y)) -> P(minus(x, y)) MINUS(x, s(y)) -> MINUS(x, y) FACITER(x, y) -> IF(isZero(x), minus(x, s(0)), y, times(y, x)) FACITER(x, y) -> ISZERO(x) FACITER(x, y) -> MINUS(x, s(0)) FACITER(x, y) -> TIMES(y, x) IF(false, x, y, z) -> FACITER(x, z) FACTORIAL(x) -> FACITER(x, s(0)) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 6 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(x, s(y)) -> MINUS(x, y) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(x, s(y)) -> MINUS(x, y) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(x, s(y)) -> MINUS(x, y) R is empty. The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(x, s(y)) -> MINUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(x, s(y)) -> MINUS(x, y) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: PLUS(s(x), y) -> PLUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PLUS(s(x), y) -> PLUS(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (22) YES ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) R is empty. The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: TIMES(s(x), y) -> TIMES(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *TIMES(s(x), y) -> TIMES(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (31) YES ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: FACITER(x, y) -> IF(isZero(x), minus(x, s(0)), y, times(y, x)) IF(false, x, y, z) -> FACITER(x, z) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: FACITER(x, y) -> IF(isZero(x), minus(x, s(0)), y, times(y, x)) IF(false, x, y, z) -> FACITER(x, z) The TRS R consists of the following rules: plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) p(s(x)) -> x p(0) -> 0 minus(x, 0) -> x minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) isZero(0) -> true isZero(s(x)) -> false facIter(x, y) -> if(isZero(x), minus(x, s(0)), y, times(y, x)) if(true, x, y, z) -> y if(false, x, y, z) -> facIter(x, z) factorial(x) -> facIter(x, s(0)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: FACITER(x, y) -> IF(isZero(x), minus(x, s(0)), y, times(y, x)) IF(false, x, y, z) -> FACITER(x, z) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. facIter(x0, x1) if(true, x0, x1, x2) if(false, x0, x1, x2) factorial(x0) ---------------------------------------- (38) Obligation: Q DP problem: The TRS P consists of the following rules: FACITER(x, y) -> IF(isZero(x), minus(x, s(0)), y, times(y, x)) IF(false, x, y, z) -> FACITER(x, z) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule FACITER(x, y) -> IF(isZero(x), minus(x, s(0)), y, times(y, x)) at position [0] we obtained the following new rules [LPAR04]: (FACITER(0, y1) -> IF(true, minus(0, s(0)), y1, times(y1, 0)),FACITER(0, y1) -> IF(true, minus(0, s(0)), y1, times(y1, 0))) (FACITER(s(x0), y1) -> IF(false, minus(s(x0), s(0)), y1, times(y1, s(x0))),FACITER(s(x0), y1) -> IF(false, minus(s(x0), s(0)), y1, times(y1, s(x0)))) ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(0, y1) -> IF(true, minus(0, s(0)), y1, times(y1, 0)) FACITER(s(x0), y1) -> IF(false, minus(s(x0), s(0)), y1, times(y1, s(x0))) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: FACITER(s(x0), y1) -> IF(false, minus(s(x0), s(0)), y1, times(y1, s(x0))) IF(false, x, y, z) -> FACITER(x, z) The TRS R consists of the following rules: isZero(0) -> true isZero(s(x)) -> false minus(0, x) -> 0 minus(x, s(y)) -> p(minus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: FACITER(s(x0), y1) -> IF(false, minus(s(x0), s(0)), y1, times(y1, s(x0))) IF(false, x, y, z) -> FACITER(x, z) The TRS R consists of the following rules: minus(x, s(y)) -> p(minus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) minus(0, x) -> 0 minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) isZero(0) isZero(s(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. isZero(0) isZero(s(x0)) ---------------------------------------- (46) Obligation: Q DP problem: The TRS P consists of the following rules: FACITER(s(x0), y1) -> IF(false, minus(s(x0), s(0)), y1, times(y1, s(x0))) IF(false, x, y, z) -> FACITER(x, z) The TRS R consists of the following rules: minus(x, s(y)) -> p(minus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) minus(0, x) -> 0 minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (47) TransformationProof (EQUIVALENT) By narrowing [LPAR04] the rule FACITER(s(x0), y1) -> IF(false, minus(s(x0), s(0)), y1, times(y1, s(x0))) at position [1] we obtained the following new rules [LPAR04]: (FACITER(s(y0), y1) -> IF(false, p(minus(s(y0), 0)), y1, times(y1, s(y0))),FACITER(s(y0), y1) -> IF(false, p(minus(s(y0), 0)), y1, times(y1, s(y0)))) ---------------------------------------- (48) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(s(y0), y1) -> IF(false, p(minus(s(y0), 0)), y1, times(y1, s(y0))) The TRS R consists of the following rules: minus(x, s(y)) -> p(minus(x, y)) times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) minus(0, x) -> 0 minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (49) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(s(y0), y1) -> IF(false, p(minus(s(y0), 0)), y1, times(y1, s(y0))) The TRS R consists of the following rules: minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule FACITER(s(y0), y1) -> IF(false, p(minus(s(y0), 0)), y1, times(y1, s(y0))) at position [1,0] we obtained the following new rules [LPAR04]: (FACITER(s(y0), y1) -> IF(false, p(s(y0)), y1, times(y1, s(y0))),FACITER(s(y0), y1) -> IF(false, p(s(y0)), y1, times(y1, s(y0)))) ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(s(y0), y1) -> IF(false, p(s(y0)), y1, times(y1, s(y0))) The TRS R consists of the following rules: minus(x, 0) -> x p(s(x)) -> x p(0) -> 0 times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(s(y0), y1) -> IF(false, p(s(y0)), y1, times(y1, s(y0))) The TRS R consists of the following rules: p(s(x)) -> x times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) minus(x0, 0) minus(0, x0) minus(x0, s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. minus(x0, 0) minus(0, x0) minus(x0, s(x1)) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(s(y0), y1) -> IF(false, p(s(y0)), y1, times(y1, s(y0))) The TRS R consists of the following rules: p(s(x)) -> x times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) TransformationProof (EQUIVALENT) By rewriting [LPAR04] the rule FACITER(s(y0), y1) -> IF(false, p(s(y0)), y1, times(y1, s(y0))) at position [1] we obtained the following new rules [LPAR04]: (FACITER(s(y0), y1) -> IF(false, y0, y1, times(y1, s(y0))),FACITER(s(y0), y1) -> IF(false, y0, y1, times(y1, s(y0)))) ---------------------------------------- (58) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(s(y0), y1) -> IF(false, y0, y1, times(y1, s(y0))) The TRS R consists of the following rules: p(s(x)) -> x times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (59) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (60) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(s(y0), y1) -> IF(false, y0, y1, times(y1, s(y0))) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) p(s(x0)) p(0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (61) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. p(s(x0)) p(0) ---------------------------------------- (62) Obligation: Q DP problem: The TRS P consists of the following rules: IF(false, x, y, z) -> FACITER(x, z) FACITER(s(y0), y1) -> IF(false, y0, y1, times(y1, s(y0))) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (63) TransformationProof (EQUIVALENT) By forward instantiating [JAR06] the rule IF(false, x, y, z) -> FACITER(x, z) we obtained the following new rules [LPAR04]: (IF(false, s(y_0), x1, x2) -> FACITER(s(y_0), x2),IF(false, s(y_0), x1, x2) -> FACITER(s(y_0), x2)) ---------------------------------------- (64) Obligation: Q DP problem: The TRS P consists of the following rules: FACITER(s(y0), y1) -> IF(false, y0, y1, times(y1, s(y0))) IF(false, s(y_0), x1, x2) -> FACITER(s(y_0), x2) The TRS R consists of the following rules: times(0, y) -> 0 times(s(x), y) -> plus(y, times(x, y)) plus(0, x) -> x plus(s(x), y) -> s(plus(x, y)) The set Q consists of the following terms: plus(0, x0) plus(s(x0), x1) times(0, x0) times(s(x0), x1) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (65) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *IF(false, s(y_0), x1, x2) -> FACITER(s(y_0), x2) The graph contains the following edges 2 >= 1, 4 >= 2 *FACITER(s(y0), y1) -> IF(false, y0, y1, times(y1, s(y0))) The graph contains the following edges 1 > 2, 2 >= 3 ---------------------------------------- (66) YES