/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 7 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) TransformationProof [EQUIVALENT, 0 ms] (27) QDP (28) Induction-Processor [SOUND, 6 ms] (29) AND (30) QDP (31) DependencyGraphProof [EQUIVALENT, 0 ms] (32) TRUE (33) QTRS (34) QTRSRRRProof [EQUIVALENT, 2 ms] (35) QTRS (36) RisEmptyProof [EQUIVALENT, 0 ms] (37) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) if_mod(true, x, y) -> mod(minus(x, y), y) if_mod(false, s(x), s(y)) -> s(x) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) if_mod(true, x, y) -> mod(minus(x, y), y) if_mod(false, s(x), s(y)) -> s(x) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) MINUS(s(x), s(y)) -> MINUS(x, y) MOD(s(x), s(y)) -> IF_MOD(le(y, x), s(x), s(y)) MOD(s(x), s(y)) -> LE(y, x) IF_MOD(true, x, y) -> MOD(minus(x, y), y) IF_MOD(true, x, y) -> MINUS(x, y) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) if_mod(true, x, y) -> mod(minus(x, y), y) if_mod(false, s(x), s(y)) -> s(x) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 2 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) if_mod(true, x, y) -> mod(minus(x, y), y) if_mod(false, s(x), s(y)) -> s(x) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: MINUS(s(x), s(y)) -> MINUS(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MINUS(s(x), s(y)) -> MINUS(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) if_mod(true, x, y) -> mod(minus(x, y), y) if_mod(false, s(x), s(y)) -> s(x) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: MOD(s(x), s(y)) -> IF_MOD(le(y, x), s(x), s(y)) IF_MOD(true, x, y) -> MOD(minus(x, y), y) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) mod(0, y) -> 0 mod(s(x), 0) -> 0 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) if_mod(true, x, y) -> mod(minus(x, y), y) if_mod(false, s(x), s(y)) -> s(x) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: MOD(s(x), s(y)) -> IF_MOD(le(y, x), s(x), s(y)) IF_MOD(true, x, y) -> MOD(minus(x, y), y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. mod(0, x0) mod(s(x0), 0) mod(s(x0), s(x1)) if_mod(true, x0, x1) if_mod(false, s(x0), s(x1)) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: MOD(s(x), s(y)) -> IF_MOD(le(y, x), s(x), s(y)) IF_MOD(true, x, y) -> MOD(minus(x, y), y) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) TransformationProof (EQUIVALENT) By instantiating [LPAR04] the rule IF_MOD(true, x, y) -> MOD(minus(x, y), y) we obtained the following new rules [LPAR04]: (IF_MOD(true, s(z0), s(z1)) -> MOD(minus(s(z0), s(z1)), s(z1)),IF_MOD(true, s(z0), s(z1)) -> MOD(minus(s(z0), s(z1)), s(z1))) ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: MOD(s(x), s(y)) -> IF_MOD(le(y, x), s(x), s(y)) IF_MOD(true, s(z0), s(z1)) -> MOD(minus(s(z0), s(z1)), s(z1)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) Induction-Processor (SOUND) This DP could be deleted by the Induction-Processor: IF_MOD(true_renamed, s(z0), s(z1)) -> MOD(minus(s(z0), s(z1)), s(z1)) This order was computed: Polynomial interpretation [POLO]: POL(0) = 1 POL(IF_MOD(x_1, x_2, x_3)) = x_2 POL(MOD(x_1, x_2)) = x_1 POL(false_renamed) = 1 POL(le(x_1, x_2)) = x_2 POL(minus(x_1, x_2)) = x_1 POL(s(x_1)) = 1 + x_1 POL(true_renamed) = 0 At least one of these decreasing rules is always used after the deleted DP: minus(s(x''), s(y')) -> minus(x'', y') The following formula is valid: z2:sort[a0],z3:sort[a0].((~(z2=0)/\~(z3=0))->minus'(z2, z3)=true) The transformed set: minus'(x', 0) -> false minus'(s(x''), s(y')) -> true minus'(0, s(v11)) -> false minus(x', 0) -> x' minus(s(x''), s(y')) -> minus(x'', y') le(0, y'') -> true_renamed le(s(x1), 0) -> false_renamed le(s(x2), s(y1)) -> le(x2, y1) minus(0, s(v11)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](0, 0) -> true equal_sort[a0](0, s(v18)) -> false equal_sort[a0](s(v19), 0) -> false equal_sort[a0](s(v19), s(v20)) -> equal_sort[a0](v19, v20) equal_sort[a19](true_renamed, true_renamed) -> true equal_sort[a19](true_renamed, false_renamed) -> false equal_sort[a19](false_renamed, true_renamed) -> false equal_sort[a19](false_renamed, false_renamed) -> true equal_sort[a24](witness_sort[a24], witness_sort[a24]) -> true The proof given by the theorem prover: The following output was given by the internal theorem prover:proof of internal # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Partial correctness of the following Program [x, v18, v19, v20, x', x'', y', v11, y'', x1, x2, y1] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](0, 0) -> true equal_sort[a0](0, s(v18)) -> false equal_sort[a0](s(v19), 0) -> false equal_sort[a0](s(v19), s(v20)) -> equal_sort[a0](v19, v20) equal_sort[a19](true_renamed, true_renamed) -> true equal_sort[a19](true_renamed, false_renamed) -> false equal_sort[a19](false_renamed, true_renamed) -> false equal_sort[a19](false_renamed, false_renamed) -> true equal_sort[a24](witness_sort[a24], witness_sort[a24]) -> true minus'(x', 0) -> false minus'(s(x''), s(y')) -> true minus'(0, s(v11)) -> false minus(x', 0) -> x' minus(s(x''), s(y')) -> minus(x'', y') minus(0, s(v11)) -> 0 le(0, y'') -> true_renamed le(s(x1), 0) -> false_renamed le(s(x2), s(y1)) -> le(x2, y1) using the following formula: z2:sort[a0],z3:sort[a0].((~(z2=0)/\~(z3=0))->minus'(z2, z3)=true) could be successfully shown: (0) Formula (1) Induction by data structure [EQUIVALENT, 0 ms] (2) AND (3) Formula (4) Symbolic evaluation [EQUIVALENT, 0 ms] (5) YES (6) Formula (7) Symbolic evaluation [EQUIVALENT, 0 ms] (8) Formula (9) Case Analysis [EQUIVALENT, 0 ms] (10) AND (11) Formula (12) Symbolic evaluation [EQUIVALENT, 0 ms] (13) YES (14) Formula (15) Symbolic evaluation [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: Formula: z2:sort[a0],z3:sort[a0].((~(z2=0)/\~(z3=0))->minus'(z2, z3)=true) There are no hypotheses. ---------------------------------------- (1) Induction by data structure (EQUIVALENT) Induction by data structure sort[a0] generates the following cases: 1. Base Case: Formula: z3:sort[a0].((~(0=0)/\~(z3=0))->minus'(0, z3)=true) There are no hypotheses. 1. Step Case: Formula: n:sort[a0],z3:sort[a0].((~(s(n)=0)/\~(z3=0))->minus'(s(n), z3)=true) Hypotheses: n:sort[a0],!z3:sort[a0].((~(n=0)/\~(z3=0))->minus'(n, z3)=true) ---------------------------------------- (2) Complex Obligation (AND) ---------------------------------------- (3) Obligation: Formula: z3:sort[a0].((~(0=0)/\~(z3=0))->minus'(0, z3)=true) There are no hypotheses. ---------------------------------------- (4) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (5) YES ---------------------------------------- (6) Obligation: Formula: n:sort[a0],z3:sort[a0].((~(s(n)=0)/\~(z3=0))->minus'(s(n), z3)=true) Hypotheses: n:sort[a0],!z3:sort[a0].((~(n=0)/\~(z3=0))->minus'(n, z3)=true) ---------------------------------------- (7) Symbolic evaluation (EQUIVALENT) Could be shown by simple symbolic evaluation. ---------------------------------------- (8) Obligation: Formula: z3:sort[a0],n:sort[a0].(~(z3=0)->minus'(s(n), z3)=true) Hypotheses: n:sort[a0],!z3:sort[a0].((~(n=0)/\~(z3=0))->minus'(n, z3)=true) ---------------------------------------- (9) Case Analysis (EQUIVALENT) Case analysis leads to the following new obligations: Formula: n:sort[a0].(~(0=0)->minus'(s(n), 0)=true) Hypotheses: n:sort[a0],!z3:sort[a0].((~(n=0)/\~(z3=0))->minus'(n, z3)=true) Formula: x_1:sort[a0],n:sort[a0].(~(s(x_1)=0)->minus'(s(n), s(x_1))=true) Hypotheses: n:sort[a0],!z3:sort[a0].((~(n=0)/\~(z3=0))->minus'(n, z3)=true) ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Formula: n:sort[a0].(~(0=0)->minus'(s(n), 0)=true) Hypotheses: n:sort[a0],!z3:sort[a0].((~(n=0)/\~(z3=0))->minus'(n, z3)=true) ---------------------------------------- (12) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Formula: x_1:sort[a0],n:sort[a0].(~(s(x_1)=0)->minus'(s(n), s(x_1))=true) Hypotheses: n:sort[a0],!z3:sort[a0].((~(n=0)/\~(z3=0))->minus'(n, z3)=true) ---------------------------------------- (15) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (16) YES ---------------------------------------- (29) Complex Obligation (AND) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: MOD(s(x), s(y)) -> IF_MOD(le(y, x), s(x), s(y)) The TRS R consists of the following rules: minus(x, 0) -> x minus(s(x), s(y)) -> minus(x, y) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) minus(x0, 0) minus(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (32) TRUE ---------------------------------------- (33) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: minus'(x', 0) -> false minus'(s(x''), s(y')) -> true minus'(0, s(v11)) -> false minus(x', 0) -> x' minus(s(x''), s(y')) -> minus(x'', y') le(0, y'') -> true_renamed le(s(x1), 0) -> false_renamed le(s(x2), s(y1)) -> le(x2, y1) minus(0, s(v11)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](0, 0) -> true equal_sort[a0](0, s(v18)) -> false equal_sort[a0](s(v19), 0) -> false equal_sort[a0](s(v19), s(v20)) -> equal_sort[a0](v19, v20) equal_sort[a19](true_renamed, true_renamed) -> true equal_sort[a19](true_renamed, false_renamed) -> false equal_sort[a19](false_renamed, true_renamed) -> false equal_sort[a19](false_renamed, false_renamed) -> true equal_sort[a24](witness_sort[a24], witness_sort[a24]) -> true Q is empty. ---------------------------------------- (34) QTRSRRRProof (EQUIVALENT) Used ordering: Knuth-Bendix order [KBO] with precedence:isa_true_1 > witness_sort[a24] > equal_sort[a24]_2 > equal_sort[a19]_2 > or_2 > le_2 > equal_sort[a0]_2 > not_1 > isa_false_1 > equal_bool_2 > minus_2 > 0 > false > minus'_2 > true > s_1 > true_renamed > and_2 > false_renamed and weight map: 0=4 false=9 true=9 true_renamed=5 false_renamed=6 witness_sort[a24]=1 s_1=1 not_1=1 isa_true_1=0 isa_false_1=1 minus'_2=5 minus_2=0 le_2=0 equal_bool_2=0 and_2=0 or_2=0 equal_sort[a0]_2=3 equal_sort[a19]_2=0 equal_sort[a24]_2=7 The variable weight is 1With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: minus'(x', 0) -> false minus'(s(x''), s(y')) -> true minus'(0, s(v11)) -> false minus(x', 0) -> x' minus(s(x''), s(y')) -> minus(x'', y') le(0, y'') -> true_renamed le(s(x1), 0) -> false_renamed le(s(x2), s(y1)) -> le(x2, y1) minus(0, s(v11)) -> 0 equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true and(true, x) -> x and(false, x) -> false or(true, x) -> true or(false, x) -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a0](0, 0) -> true equal_sort[a0](0, s(v18)) -> false equal_sort[a0](s(v19), 0) -> false equal_sort[a0](s(v19), s(v20)) -> equal_sort[a0](v19, v20) equal_sort[a19](true_renamed, true_renamed) -> true equal_sort[a19](true_renamed, false_renamed) -> false equal_sort[a19](false_renamed, true_renamed) -> false equal_sort[a19](false_renamed, false_renamed) -> true equal_sort[a24](witness_sort[a24], witness_sort[a24]) -> true ---------------------------------------- (35) Obligation: Q restricted rewrite system: R is empty. Q is empty. ---------------------------------------- (36) RisEmptyProof (EQUIVALENT) The TRS R is empty. Hence, termination is trivially proven. ---------------------------------------- (37) YES