/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR x0 x1 x2 x3) (RULES p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ) Problem 1: Dependency Pairs Processor: -> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(b(x1))),p(a(a(x0)),x3)) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(x0)),x3) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) Problem 1: SCC Processor: -> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(b(x1))),p(a(a(x0)),x3)) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(x0)),x3) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(b(x1))),p(a(a(x0)),x3)) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(x0)),x3) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->->-> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) Problem 1: Reduction Pair Processor: -> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(b(x1))),p(a(a(x0)),x3)) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(x0)),x3) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Usable rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [p](X1,X2) = X1 + X2 + 2 [a](X) = 2.X [b](X) = 0 [P](X1,X2) = 2.X1 + 2.X2 Problem 1: SCC Processor: -> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(x0)),x3) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(x0)),x3) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->->-> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) Problem 1: Reduction Pair Processor: -> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(a(a(x0)),x3) P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Usable rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [p](X1,X2) = 2.X2 + 2 [a](X) = 2 [b](X) = X [P](X1,X2) = 2.X2 Problem 1: SCC Processor: -> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->->-> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) Problem 1: Reduction Pair Processor: -> Pairs: P(a(a(x0)),p(x1,p(a(x2),x3))) -> P(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) -> Usable rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->Interpretation type: Linear ->Coefficients: All rationals ->Dimension: 1 ->Bound: 4 ->Interpretation: [p](X1,X2) = 3/4.X1 + 2/3.X2 [a](X) = 3.X + 4 [b](X) = 0 [P](X1,X2) = 3/2.X1 + X2 Problem 1: SCC Processor: -> Pairs: Empty -> Rules: p(a(a(x0)),p(x1,p(a(x2),x3))) -> p(x2,p(a(a(b(x1))),p(a(a(x0)),x3))) ->Strongly Connected Components: There is no strongly connected component The problem is finite.