/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 19 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) UsableRulesReductionPairsProof [EQUIVALENT, 0 ms] (13) QDP (14) PisEmptyProof [EQUIVALENT, 0 ms] (15) YES (16) QDP (17) UsableRulesProof [EQUIVALENT, 0 ms] (18) QDP (19) QReductionProof [EQUIVALENT, 0 ms] (20) QDP (21) QDPOrderProof [EQUIVALENT, 14 ms] (22) QDP (23) PisEmptyProof [EQUIVALENT, 0 ms] (24) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) SUM(cons(0, x), y) -> SUM(x, y) WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) WEIGHT(cons(n, cons(m, x))) -> SUM(cons(n, cons(m, x)), cons(0, x)) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) R is empty. The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) UsableRulesReductionPairsProof (EQUIVALENT) By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. The following dependency pairs can be deleted: SUM(cons(0, x), y) -> SUM(x, y) SUM(cons(s(n), x), cons(m, y)) -> SUM(cons(n, x), cons(s(m), y)) No rules are removed from R. Used ordering: POLO with Polynomial interpretation [POLO]: POL(0) = 0 POL(SUM(x_1, x_2)) = 2*x_1 + x_2 POL(cons(x_1, x_2)) = x_1 + x_2 POL(s(x_1)) = 2 + x_1 ---------------------------------------- (13) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (14) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) The TRS R consists of the following rules: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y weight(cons(n, cons(m, x))) -> weight(sum(cons(n, cons(m, x)), cons(0, x))) weight(cons(n, nil)) -> n The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) The TRS R consists of the following rules: sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. weight(cons(x0, cons(x1, x2))) weight(cons(x0, nil)) ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) The TRS R consists of the following rules: sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. WEIGHT(cons(n, cons(m, x))) -> WEIGHT(sum(cons(n, cons(m, x)), cons(0, x))) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. WEIGHT(x1) = x1 cons(x1, x2) = cons(x2) sum(x1, x2) = x2 Knuth-Bendix order [KBO] with precedence:trivial and weight map: dummyConstant=1 cons_1=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(cons(0, x), y) -> sum(x, y) sum(nil, y) -> y ---------------------------------------- (22) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: sum(cons(0, x), y) -> sum(x, y) sum(cons(s(n), x), cons(m, y)) -> sum(cons(n, x), cons(s(m), y)) sum(nil, y) -> y The set Q consists of the following terms: sum(cons(s(x0), x1), cons(x2, x3)) sum(cons(0, x0), x1) sum(nil, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (24) YES