/export/starexec/sandbox/solver/bin/starexec_run_FirstOrder /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES We consider the system theBenchmark. We are asked to determine termination of the following first-order TRS. ap : [o * o] --> o cons : [] --> o ff : [] --> o nil : [] --> o ap(ap(ff, X), X) => ap(ap(X, ap(ff, X)), ap(ap(cons, X), nil)) We use the dependency pair framework as described in [Kop12, Ch. 6/7], with static dependency pairs (see [KusIsoSakBla09] and the adaptation for AFSMs in [Kop12, Ch. 7.8]). We thus obtain the following dependency pair problem (P_0, R_0, minimal, all): Dependency Pairs P_0: 0] ap#(ap(ff, X), X) =#> ap#(ap(X, ap(ff, X)), ap(ap(cons, X), nil)) 1] ap#(ap(ff, X), X) =#> ap#(X, ap(ff, X)) 2] ap#(ap(ff, X), X) =#> ap#(ff, X) 3] ap#(ap(ff, X), X) =#> ap#(ap(cons, X), nil) 4] ap#(ap(ff, X), X) =#> ap#(cons, X) Rules R_0: ap(ap(ff, X), X) => ap(ap(X, ap(ff, X)), ap(ap(cons, X), nil)) Thus, the original system is terminating if (P_0, R_0, minimal, all) is finite. We consider the dependency pair problem (P_0, R_0, minimal, all). We place the elements of P in a dependency graph approximation G (see e.g. [Kop12, Thm. 7.27, 7.29], as follows: * 0 : 0, 1, 2, 3, 4 * 1 : 0, 1, 2, 3, 4 * 2 : * 3 : 0, 1, 2, 3, 4 * 4 : This graph has the following strongly connected components: P_1: ap#(ap(ff, X), X) =#> ap#(ap(X, ap(ff, X)), ap(ap(cons, X), nil)) ap#(ap(ff, X), X) =#> ap#(X, ap(ff, X)) ap#(ap(ff, X), X) =#> ap#(ap(cons, X), nil) By [Kop12, Thm. 7.31], we may replace any dependency pair problem (P_0, R_0, m, f) by (P_1, R_0, m, f). Thus, the original system is terminating if (P_1, R_0, minimal, all) is finite. We consider the dependency pair problem (P_1, R_0, minimal, all). We will use the reduction pair processor [Kop12, Thm. 7.16]. It suffices to find a standard reduction pair [Kop12, Def. 6.69]. Thus, we must orient: ap#(ap(ff, X), X) >? ap#(ap(X, ap(ff, X)), ap(ap(cons, X), nil)) ap#(ap(ff, X), X) >? ap#(X, ap(ff, X)) ap#(ap(ff, X), X) >? ap#(ap(cons, X), nil) ap(ap(ff, X), X) >= ap(ap(X, ap(ff, X)), ap(ap(cons, X), nil)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: ap = \y0y1.y0 + y0y1 ap# = \y0y1.2y0 + 2y0y1 cons = 0 ff = 2 nil = 0 Using this interpretation, the requirements translate to: [[ap#(ap(ff, _x0), _x0)]] = 4 + 4x0x0 + 8x0 > 4x0x0 + 6x0 = [[ap#(ap(_x0, ap(ff, _x0)), ap(ap(cons, _x0), nil))]] [[ap#(ap(ff, _x0), _x0)]] = 4 + 4x0x0 + 8x0 > 4x0x0 + 6x0 = [[ap#(_x0, ap(ff, _x0))]] [[ap#(ap(ff, _x0), _x0)]] = 4 + 4x0x0 + 8x0 > 0 = [[ap#(ap(cons, _x0), nil)]] [[ap(ap(ff, _x0), _x0)]] = 2 + 2x0x0 + 4x0 >= 2x0x0 + 3x0 = [[ap(ap(_x0, ap(ff, _x0)), ap(ap(cons, _x0), nil))]] By the observations in [Kop12, Sec. 6.6], this reduction pair suffices; we may thus replace a dependency pair problem (P_1, R_0) by ({}, R_0). By the empty set processor [Kop12, Thm. 7.15] this problem may be immediately removed. As all dependency pair problems were succesfully simplified with sound (and complete) processors until nothing remained, we conclude termination. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012. [KusIsoSakBla09] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static Dependency Pair Method Based On Strong Computability for Higher-Order Rewrite Systems. In volume 92(10) of IEICE Transactions on Information and Systems. 2007--2015, 2009.