/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES Problem 1: (VAR m n x y) (RULES sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n ) Problem 1: Innermost Equivalent Processor: -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n -> The term rewriting system is non-overlaping or locally confluent overlay system. Therefore, innermost termination implies termination. Problem 1: Dependency Pairs Processor: -> Pairs: SUM(cons(0,x),y) -> SUM(x,y) SUM(cons(s(n),x),cons(m,y)) -> SUM(cons(n,x),cons(s(m),y)) WEIGHT(cons(n,cons(m,x))) -> SUM(cons(n,cons(m,x)),cons(0,x)) WEIGHT(cons(n,cons(m,x))) -> WEIGHT(sum(cons(n,cons(m,x)),cons(0,x))) -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n Problem 1: SCC Processor: -> Pairs: SUM(cons(0,x),y) -> SUM(x,y) SUM(cons(s(n),x),cons(m,y)) -> SUM(cons(n,x),cons(s(m),y)) WEIGHT(cons(n,cons(m,x))) -> SUM(cons(n,cons(m,x)),cons(0,x)) WEIGHT(cons(n,cons(m,x))) -> WEIGHT(sum(cons(n,cons(m,x)),cons(0,x))) -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: SUM(cons(0,x),y) -> SUM(x,y) SUM(cons(s(n),x),cons(m,y)) -> SUM(cons(n,x),cons(s(m),y)) ->->-> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n ->->Cycle: ->->-> Pairs: WEIGHT(cons(n,cons(m,x))) -> WEIGHT(sum(cons(n,cons(m,x)),cons(0,x))) ->->-> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n The problem is decomposed in 2 subproblems. Problem 1.1: Reduction Pairs Processor: -> Pairs: SUM(cons(0,x),y) -> SUM(x,y) SUM(cons(s(n),x),cons(m,y)) -> SUM(cons(n,x),cons(s(m),y)) -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [0] = 2 [cons](X1,X2) = 2.X1 + 2.X2 + 2 [s](X) = X + 1 [SUM](X1,X2) = 2.X1 + 2.X2 Problem 1.1: SCC Processor: -> Pairs: SUM(cons(s(n),x),cons(m,y)) -> SUM(cons(n,x),cons(s(m),y)) -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n ->Strongly Connected Components: ->->Cycle: ->->-> Pairs: SUM(cons(s(n),x),cons(m,y)) -> SUM(cons(n,x),cons(s(m),y)) ->->-> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n Problem 1.1: Reduction Pairs Processor: -> Pairs: SUM(cons(s(n),x),cons(m,y)) -> SUM(cons(n,x),cons(s(m),y)) -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n -> Usable rules: Empty ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [cons](X1,X2) = 2.X1 [s](X) = X + 2 [SUM](X1,X2) = 2.X1 + X2 Problem 1.1: SCC Processor: -> Pairs: Empty -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n ->Strongly Connected Components: There is no strongly connected component The problem is finite. Problem 1.2: Reduction Pairs Processor: -> Pairs: WEIGHT(cons(n,cons(m,x))) -> WEIGHT(sum(cons(n,cons(m,x)),cons(0,x))) -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n -> Usable rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y ->Interpretation type: Linear ->Coefficients: Natural Numbers ->Dimension: 1 ->Bound: 2 ->Interpretation: [sum](X1,X2) = X2 + 1 [0] = 0 [cons](X1,X2) = 2.X1 + 2.X2 + 2 [nil] = 0 [s](X) = X [WEIGHT](X) = 2.X Problem 1.2: SCC Processor: -> Pairs: Empty -> Rules: sum(cons(0,x),y) -> sum(x,y) sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(nil,y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(0,x))) weight(cons(n,nil)) -> n ->Strongly Connected Components: There is no strongly connected component The problem is finite.