/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) Overlay + Local Confluence [EQUIVALENT, 0 ms] (2) QTRS (3) DependencyPairsProof [EQUIVALENT, 31 ms] (4) QDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) QDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) QDP (10) QReductionProof [EQUIVALENT, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) QDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) QDP (17) QReductionProof [EQUIVALENT, 0 ms] (18) QDP (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] (20) YES (21) QDP (22) UsableRulesProof [EQUIVALENT, 0 ms] (23) QDP (24) QReductionProof [EQUIVALENT, 0 ms] (25) QDP (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] (27) YES (28) QDP (29) UsableRulesProof [EQUIVALENT, 0 ms] (30) QDP (31) QReductionProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] (34) YES (35) QDP (36) UsableRulesProof [EQUIVALENT, 0 ms] (37) QDP (38) QReductionProof [EQUIVALENT, 0 ms] (39) QDP (40) QDPOrderProof [EQUIVALENT, 108 ms] (41) QDP (42) DependencyGraphProof [EQUIVALENT, 0 ms] (43) TRUE ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) head(add(n, x)) -> n tail(add(n, x)) -> x isempty(nil) -> true isempty(add(n, x)) -> false quicksort(x) -> if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) if_qs(true, x, n, y) -> nil if_qs(false, x, n, y) -> app(quicksort(x), add(n, quicksort(y))) Q is empty. ---------------------------------------- (1) Overlay + Local Confluence (EQUIVALENT) The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. ---------------------------------------- (2) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) head(add(n, x)) -> n tail(add(n, x)) -> x isempty(nil) -> true isempty(add(n, x)) -> false quicksort(x) -> if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) if_qs(true, x, n, y) -> nil if_qs(false, x, n, y) -> app(quicksort(x), add(n, quicksort(y))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (4) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) APP(add(n, x), y) -> APP(x, y) LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) LOW(n, add(m, x)) -> LE(m, n) IF_LOW(true, n, add(m, x)) -> LOW(n, x) IF_LOW(false, n, add(m, x)) -> LOW(n, x) HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) HIGH(n, add(m, x)) -> LE(m, n) IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) QUICKSORT(x) -> IF_QS(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) QUICKSORT(x) -> ISEMPTY(x) QUICKSORT(x) -> LOW(head(x), tail(x)) QUICKSORT(x) -> HEAD(x) QUICKSORT(x) -> TAIL(x) QUICKSORT(x) -> HIGH(head(x), tail(x)) IF_QS(false, x, n, y) -> APP(quicksort(x), add(n, quicksort(y))) IF_QS(false, x, n, y) -> QUICKSORT(x) IF_QS(false, x, n, y) -> QUICKSORT(y) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) head(add(n, x)) -> n tail(add(n, x)) -> x isempty(nil) -> true isempty(add(n, x)) -> false quicksort(x) -> if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) if_qs(true, x, n, y) -> nil if_qs(false, x, n, y) -> app(quicksort(x), add(n, quicksort(y))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 8 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) head(add(n, x)) -> n tail(add(n, x)) -> x isempty(nil) -> true isempty(add(n, x)) -> false quicksort(x) -> if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) if_qs(true, x, n, y) -> nil if_qs(false, x, n, y) -> app(quicksort(x), add(n, quicksort(y))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APP(add(n, x), y) -> APP(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP(add(n, x), y) -> APP(x, y) The graph contains the following edges 1 > 1, 2 >= 2 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) head(add(n, x)) -> n tail(add(n, x)) -> x isempty(nil) -> true isempty(add(n, x)) -> false quicksort(x) -> if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) if_qs(true, x, n, y) -> nil if_qs(false, x, n, y) -> app(quicksort(x), add(n, quicksort(y))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: LE(s(x), s(y)) -> LE(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (19) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LE(s(x), s(y)) -> LE(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (20) YES ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) head(add(n, x)) -> n tail(add(n, x)) -> x isempty(nil) -> true isempty(add(n, x)) -> false quicksort(x) -> if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) if_qs(true, x, n, y) -> nil if_qs(false, x, n, y) -> app(quicksort(x), add(n, quicksort(y))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HIGH(n, add(m, x)) -> IF_HIGH(le(m, n), n, add(m, x)) The graph contains the following edges 1 >= 2, 2 >= 3 *IF_HIGH(true, n, add(m, x)) -> HIGH(n, x) The graph contains the following edges 2 >= 1, 3 > 2 *IF_HIGH(false, n, add(m, x)) -> HIGH(n, x) The graph contains the following edges 2 >= 1, 3 > 2 ---------------------------------------- (27) YES ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) IF_LOW(true, n, add(m, x)) -> LOW(n, x) IF_LOW(false, n, add(m, x)) -> LOW(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) head(add(n, x)) -> n tail(add(n, x)) -> x isempty(nil) -> true isempty(add(n, x)) -> false quicksort(x) -> if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) if_qs(true, x, n, y) -> nil if_qs(false, x, n, y) -> app(quicksort(x), add(n, quicksort(y))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) IF_LOW(true, n, add(m, x)) -> LOW(n, x) IF_LOW(false, n, add(m, x)) -> LOW(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) IF_LOW(true, n, add(m, x)) -> LOW(n, x) IF_LOW(false, n, add(m, x)) -> LOW(n, x) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LOW(n, add(m, x)) -> IF_LOW(le(m, n), n, add(m, x)) The graph contains the following edges 1 >= 2, 2 >= 3 *IF_LOW(true, n, add(m, x)) -> LOW(n, x) The graph contains the following edges 2 >= 1, 3 > 2 *IF_LOW(false, n, add(m, x)) -> LOW(n, x) The graph contains the following edges 2 >= 1, 3 > 2 ---------------------------------------- (34) YES ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(x) -> IF_QS(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) IF_QS(false, x, n, y) -> QUICKSORT(x) IF_QS(false, x, n, y) -> QUICKSORT(y) The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) app(nil, y) -> y app(add(n, x), y) -> add(n, app(x, y)) low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_high(false, n, add(m, x)) -> add(m, high(n, x)) head(add(n, x)) -> n tail(add(n, x)) -> x isempty(nil) -> true isempty(add(n, x)) -> false quicksort(x) -> if_qs(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) if_qs(true, x, n, y) -> nil if_qs(false, x, n, y) -> app(quicksort(x), add(n, quicksort(y))) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(x) -> IF_QS(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) IF_QS(false, x, n, y) -> QUICKSORT(x) IF_QS(false, x, n, y) -> QUICKSORT(y) The TRS R consists of the following rules: isempty(nil) -> true isempty(add(n, x)) -> false head(add(n, x)) -> n tail(add(n, x)) -> x low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if_high(false, n, add(m, x)) -> add(m, high(n, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) app(nil, x0) app(add(x0, x1), x2) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. app(nil, x0) app(add(x0, x1), x2) quicksort(x0) if_qs(true, x0, x1, x2) if_qs(false, x0, x1, x2) ---------------------------------------- (39) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(x) -> IF_QS(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) IF_QS(false, x, n, y) -> QUICKSORT(x) IF_QS(false, x, n, y) -> QUICKSORT(y) The TRS R consists of the following rules: isempty(nil) -> true isempty(add(n, x)) -> false head(add(n, x)) -> n tail(add(n, x)) -> x low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if_high(false, n, add(m, x)) -> add(m, high(n, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (40) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. IF_QS(false, x, n, y) -> QUICKSORT(x) IF_QS(false, x, n, y) -> QUICKSORT(y) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial interpretation [POLO,RATPOLO]: POL(0) = 0 POL(IF_QS(x_1, x_2, x_3, x_4)) = [1/2]x_1 + [4]x_2 + [1/4]x_3 + [4]x_4 POL(QUICKSORT(x_1)) = [4]x_1 POL(add(x_1, x_2)) = [4] + [2]x_1 + [4]x_2 POL(false) = [1/4] POL(head(x_1)) = [1/2]x_1 POL(high(x_1, x_2)) = x_2 POL(if_high(x_1, x_2, x_3)) = x_3 POL(if_low(x_1, x_2, x_3)) = [2]x_3 POL(isempty(x_1)) = [1/4]x_1 POL(le(x_1, x_2)) = 0 POL(low(x_1, x_2)) = [2]x_2 POL(nil) = [1/4] POL(s(x_1)) = 0 POL(tail(x_1)) = [1/4]x_1 POL(true) = 0 The value of delta used in the strict ordering is 1/8. The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: isempty(nil) -> true isempty(add(n, x)) -> false head(add(n, x)) -> n tail(add(n, x)) -> x low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) if_low(true, n, add(m, x)) -> add(m, low(n, x)) if_high(false, n, add(m, x)) -> add(m, high(n, x)) ---------------------------------------- (41) Obligation: Q DP problem: The TRS P consists of the following rules: QUICKSORT(x) -> IF_QS(isempty(x), low(head(x), tail(x)), head(x), high(head(x), tail(x))) The TRS R consists of the following rules: isempty(nil) -> true isempty(add(n, x)) -> false head(add(n, x)) -> n tail(add(n, x)) -> x low(n, nil) -> nil low(n, add(m, x)) -> if_low(le(m, n), n, add(m, x)) if_low(false, n, add(m, x)) -> low(n, x) high(n, nil) -> nil high(n, add(m, x)) -> if_high(le(m, n), n, add(m, x)) if_high(true, n, add(m, x)) -> high(n, x) le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) if_high(false, n, add(m, x)) -> add(m, high(n, x)) if_low(true, n, add(m, x)) -> add(m, low(n, x)) The set Q consists of the following terms: le(0, x0) le(s(x0), 0) le(s(x0), s(x1)) low(x0, nil) low(x0, add(x1, x2)) if_low(true, x0, add(x1, x2)) if_low(false, x0, add(x1, x2)) high(x0, nil) high(x0, add(x1, x2)) if_high(true, x0, add(x1, x2)) if_high(false, x0, add(x1, x2)) head(add(x0, x1)) tail(add(x0, x1)) isempty(nil) isempty(add(x0, x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (42) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (43) TRUE