/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 12 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) UsableRulesProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPSizeChangeProof [EQUIVALENT, 0 ms] (24) YES (25) QDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) QDP (28) QDPSizeChangeProof [EQUIVALENT, 0 ms] (29) YES (30) QDP (31) UsableRulesProof [EQUIVALENT, 0 ms] (32) QDP (33) QDPOrderProof [EQUIVALENT, 52 ms] (34) QDP (35) MRRProof [EQUIVALENT, 23 ms] (36) QDP (37) MRRProof [EQUIVALENT, 0 ms] (38) QDP (39) PisEmptyProof [EQUIVALENT, 0 ms] (40) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(active(c)) -> TOP(mark(c)) TOP(mark(x)) -> TOP(check(x)) TOP(mark(x)) -> CHECK(x) CHECK(f(x)) -> F(check(x)) CHECK(f(x)) -> CHECK(x) CHECK(x) -> START(match(f(X), x)) CHECK(x) -> MATCH(f(X), x) CHECK(x) -> F(X) MATCH(f(x), f(y)) -> F(match(x, y)) MATCH(f(x), f(y)) -> MATCH(x, y) MATCH(X, x) -> PROPER(x) PROPER(f(x)) -> F(proper(x)) PROPER(f(x)) -> PROPER(x) F(ok(x)) -> F(x) F(found(x)) -> F(x) TOP(found(x)) -> TOP(active(x)) TOP(found(x)) -> ACTIVE(x) ACTIVE(f(x)) -> F(active(x)) ACTIVE(f(x)) -> ACTIVE(x) F(mark(x)) -> F(x) The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 10 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: F(found(x)) -> F(x) F(ok(x)) -> F(x) F(mark(x)) -> F(x) The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: F(found(x)) -> F(x) F(ok(x)) -> F(x) F(mark(x)) -> F(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *F(found(x)) -> F(x) The graph contains the following edges 1 > 1 *F(ok(x)) -> F(x) The graph contains the following edges 1 > 1 *F(mark(x)) -> F(x) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(x)) -> ACTIVE(x) The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(f(x)) -> ACTIVE(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ACTIVE(f(x)) -> ACTIVE(x) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: PROPER(f(x)) -> PROPER(x) The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: PROPER(f(x)) -> PROPER(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *PROPER(f(x)) -> PROPER(x) The graph contains the following edges 1 > 1 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: MATCH(f(x), f(y)) -> MATCH(x, y) The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: MATCH(f(x), f(y)) -> MATCH(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MATCH(f(x), f(y)) -> MATCH(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (24) YES ---------------------------------------- (25) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK(f(x)) -> CHECK(x) The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: CHECK(f(x)) -> CHECK(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CHECK(f(x)) -> CHECK(x) The graph contains the following edges 1 > 1 ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(mark(x)) -> TOP(check(x)) TOP(found(x)) -> TOP(active(x)) TOP(active(c)) -> TOP(mark(c)) The TRS R consists of the following rules: active(f(x)) -> mark(x) top(active(c)) -> top(mark(c)) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (32) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(mark(x)) -> TOP(check(x)) TOP(found(x)) -> TOP(active(x)) TOP(active(c)) -> TOP(mark(c)) The TRS R consists of the following rules: active(f(x)) -> mark(x) active(f(x)) -> f(active(x)) f(ok(x)) -> ok(f(x)) f(found(x)) -> found(f(x)) f(mark(x)) -> mark(f(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) start(ok(x)) -> found(x) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (33) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. TOP(active(c)) -> TOP(mark(c)) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. TOP(x1) = TOP(x1) mark(x1) = mark check(x1) = check found(x1) = x1 active(x1) = x1 c = c f(x1) = f start(x1) = x1 match(x1, x2) = x1 X = X ok(x1) = x1 proper(x1) = proper(x1) Recursive path order with status [RPO]. Quasi-Precedence: [TOP_1, c, X, proper_1] > [mark, check, f] Status: TOP_1: [1] mark: multiset status check: multiset status c: multiset status f: multiset status X: multiset status proper_1: multiset status The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) active(f(x)) -> mark(x) active(f(x)) -> f(active(x)) f(ok(x)) -> ok(f(x)) f(found(x)) -> found(f(x)) f(mark(x)) -> mark(f(x)) match(f(x), f(y)) -> f(match(x, y)) start(ok(x)) -> found(x) ---------------------------------------- (34) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(mark(x)) -> TOP(check(x)) TOP(found(x)) -> TOP(active(x)) The TRS R consists of the following rules: active(f(x)) -> mark(x) active(f(x)) -> f(active(x)) f(ok(x)) -> ok(f(x)) f(found(x)) -> found(f(x)) f(mark(x)) -> mark(f(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) start(ok(x)) -> found(x) match(X, x) -> proper(x) proper(c) -> ok(c) proper(f(x)) -> f(proper(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (35) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented rules of the TRS R: proper(c) -> ok(c) Used ordering: Polynomial interpretation [POLO]: POL(TOP(x_1)) = 2*x_1 POL(X) = 0 POL(active(x_1)) = x_1 POL(c) = 2 POL(check(x_1)) = 2*x_1 POL(f(x_1)) = 2*x_1 POL(found(x_1)) = x_1 POL(mark(x_1)) = 2*x_1 POL(match(x_1, x_2)) = 2*x_1 + 2*x_2 POL(ok(x_1)) = x_1 POL(proper(x_1)) = 2*x_1 POL(start(x_1)) = x_1 ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: TOP(mark(x)) -> TOP(check(x)) TOP(found(x)) -> TOP(active(x)) The TRS R consists of the following rules: active(f(x)) -> mark(x) active(f(x)) -> f(active(x)) f(ok(x)) -> ok(f(x)) f(found(x)) -> found(f(x)) f(mark(x)) -> mark(f(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) start(ok(x)) -> found(x) match(X, x) -> proper(x) proper(f(x)) -> f(proper(x)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (37) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: TOP(mark(x)) -> TOP(check(x)) TOP(found(x)) -> TOP(active(x)) Strictly oriented rules of the TRS R: active(f(x)) -> mark(x) active(f(x)) -> f(active(x)) f(ok(x)) -> ok(f(x)) f(found(x)) -> found(f(x)) f(mark(x)) -> mark(f(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X), x)) match(f(x), f(y)) -> f(match(x, y)) start(ok(x)) -> found(x) match(X, x) -> proper(x) proper(f(x)) -> f(proper(x)) Used ordering: Knuth-Bendix order [KBO] with precedence:TOP_1 > X > check_1 > active_1 > start_1 > match_2 > proper_1 > f_1 > ok_1 > mark_1 > found_1 and weight map: X=1 active_1=6 f_1=1 mark_1=6 ok_1=6 found_1=7 check_1=5 start_1=1 proper_1=2 TOP_1=1 match_2=2 The variable weight is 1 ---------------------------------------- (38) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (39) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (40) YES