/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 0 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QDPSizeChangeProof [EQUIVALENT, 0 ms] (9) YES (10) QDP (11) UsableRulesProof [EQUIVALENT, 0 ms] (12) QDP (13) QDPSizeChangeProof [EQUIVALENT, 0 ms] (14) YES (15) QDP (16) UsableRulesProof [EQUIVALENT, 0 ms] (17) QDP (18) QDPSizeChangeProof [EQUIVALENT, 0 ms] (19) YES (20) QDP (21) QDPOrderProof [EQUIVALENT, 0 ms] (22) QDP (23) QDPOrderProof [EQUIVALENT, 23 ms] (24) QDP (25) PisEmptyProof [EQUIVALENT, 0 ms] (26) YES (27) QDP (28) UsableRulesProof [EQUIVALENT, 0 ms] (29) QDP (30) QDPSizeChangeProof [EQUIVALENT, 0 ms] (31) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(s(x), s(y)) -> -^1(x, y) *^1(x, s(y)) -> *^1(x, y) ODD(s(s(x))) -> ODD(x) HALF(s(s(x))) -> HALF(x) POW(x, y) -> F(x, y, s(0)) F(x, s(y), z) -> IF(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) F(x, s(y), z) -> ODD(s(y)) F(x, s(y), z) -> F(x, y, *(x, z)) F(x, s(y), z) -> *^1(x, z) F(x, s(y), z) -> F(*(x, x), half(s(y)), z) F(x, s(y), z) -> *^1(x, x) F(x, s(y), z) -> HALF(s(y)) The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 6 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: HALF(s(s(x))) -> HALF(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *HALF(s(s(x))) -> HALF(x) The graph contains the following edges 1 > 1 ---------------------------------------- (9) YES ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: ODD(s(s(x))) -> ODD(x) The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (11) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ODD(s(s(x))) -> ODD(x) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ODD(s(s(x))) -> ODD(x) The graph contains the following edges 1 > 1 ---------------------------------------- (14) YES ---------------------------------------- (15) Obligation: Q DP problem: The TRS P consists of the following rules: *^1(x, s(y)) -> *^1(x, y) The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (16) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (17) Obligation: Q DP problem: The TRS P consists of the following rules: *^1(x, s(y)) -> *^1(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (18) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: **^1(x, s(y)) -> *^1(x, y) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (19) YES ---------------------------------------- (20) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, s(y), z) -> F(*(x, x), half(s(y)), z) F(x, s(y), z) -> F(x, y, *(x, z)) The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (21) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(x, s(y), z) -> F(x, y, *(x, z)) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( F_3(x_1, ..., x_3) ) = max{0, 2x_2 - 2} POL( *_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( 0 ) = 0 POL( s_1(x_1) ) = x_1 + 2 POL( +_2(x_1, x_2) ) = 2 POL( half_1(x_1) ) = x_1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) half(0) -> 0 ---------------------------------------- (22) Obligation: Q DP problem: The TRS P consists of the following rules: F(x, s(y), z) -> F(*(x, x), half(s(y)), z) The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (23) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. F(x, s(y), z) -> F(*(x, x), half(s(y)), z) The remaining pairs can at least be oriented weakly. Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: POL( F_3(x_1, ..., x_3) ) = max{0, 2x_2 - 2} POL( *_2(x_1, x_2) ) = 2x_1 + 2x_2 POL( 0 ) = 0 POL( s_1(x_1) ) = x_1 + 2 POL( +_2(x_1, x_2) ) = max{0, 2x_1 - 2} POL( half_1(x_1) ) = max{0, x_1 - 2} The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) half(0) -> 0 ---------------------------------------- (24) Obligation: Q DP problem: P is empty. The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (25) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (26) YES ---------------------------------------- (27) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(s(x), s(y)) -> -^1(x, y) The TRS R consists of the following rules: -(x, 0) -> x -(s(x), s(y)) -> -(x, y) *(x, 0) -> 0 *(x, s(y)) -> +(*(x, y), x) if(true, x, y) -> x if(false, x, y) -> y odd(0) -> false odd(s(0)) -> true odd(s(s(x))) -> odd(x) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) if(true, x, y) -> true if(false, x, y) -> false pow(x, y) -> f(x, y, s(0)) f(x, 0, z) -> z f(x, s(y), z) -> if(odd(s(y)), f(x, y, *(x, z)), f(*(x, x), half(s(y)), z)) Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (28) UsableRulesProof (EQUIVALENT) We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: -^1(s(x), s(y)) -> -^1(x, y) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (30) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *-^1(s(x), s(y)) -> -^1(x, y) The graph contains the following edges 1 > 1, 2 > 2 ---------------------------------------- (31) YES